• Title/Summary/Keyword: multiple supply voltages

Search Result 12, Processing Time 0.017 seconds

The Design of the Ternary Sequential Logic Circuit Using Ternary Logic Gates (3치 논리 게이트를 이용한 3치 순차 논리 회로 설계)

  • 윤병희;최영희;이철우;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.52-62
    • /
    • 2003
  • This paper discusses ternary logic gate, ternary D flip-flop, and ternary four-digit parallel input/output register. The ternary logic gates consist of n-channel pass transistors and neuron MOS(νMOS) threshold inverters on voltage mode. They are designed with a transmission function using threshold inverter that are in turn, designed using Down Literal Circuit(DLC) that has various threshold voltages. The νMOS pass transistor is very suitable gate to the multiple-valued logic(MVL) and has the input signal of the multi-level νMOS threshold inverter. The ternary D flip-flop uses the storage element of the ternary data. The ternary four-digit parallel input/output register consists of four ternary D flip-flops which can temporarily store four-digit ternary data. In this paper, these circuits use 3.3V low power supply voltage and 0.35m process parameter, and also represent HSPICE simulation result.

T/R Module Development for X-Band Active Phased-Array Radar (능동 위상 배열 레이더용 X-대역 T/R 모듈 개발)

  • Kim, Dong-Yoon;Chong, Min-Kil;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi;Baik, Seung-Hun;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1243-1251
    • /
    • 2009
  • This paper presents design and test results of X-Band Transmit/Receive(T/R) module for active phased-array radar. Active phased array radars typically require solid state T/R modules with high output power, low noise figure, high Third Order Intercept(TOI), and sufficient gain in both transmit and receive. The output power of the module is 9 watts over a wide bandwidth. The noise figure is as low as 2.8 dB. Phase and amplitude are controlled by the 6-bit phase shifter and 5-bit attenuator, respectively. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. The module incorporates a compact digital interface, requires only three supply voltages.