• 제목/요약/키워드: multiple steam generator tube rupture (SGTR) event

검색결과 3건 처리시간 0.017초

Simulation of Multiple Steam Generator Tube Rupture (SGTR) Event Scenario

  • Seul Kwang Won;Bang Young Seok;Kim In Goo;Yonomoto Taisuke;Anoda Yoshinari
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.179-190
    • /
    • 2003
  • The multiple steam generator tube rupture (SGTR) event scenario with available safety systems was experimentally and analytically evaluated. The experiment was conducted on the large scaled test facility to simulate the multiple SGTR event and investigate the effectiveness of operator actions. As a result, it indicated that the opening of pressurizer power operated relief valve was significantly effective in quickly terminating the primary-to-secondary break flow even for the 6.5 tubes rupture. In the analysis, the recent version of RELAP5 code was assessed with the test data. It indicated that the calculations agreed well with the measured data and that the plant responses such as the water level and relief valve cycling in the damaged steam generator were reasonably predicted. Finally, sensitivity study on the number of ruptured tubes up to 10 tubes was performed to investigate the coolant release into atmosphere. It indicated that the integrated steam mass released was not significantly varied with the number of ruptured tubes although the damaged steam generator was overfilled for more than 3 tubes rupture. These findings are expected to provide useful information in understanding and evaluating the plant ability to mitigate the consequence of multiple SGTR event.

Best-Estimate Analysis of MSGTR Event in APR1400 Aiming to Examine the Effect of Affected Steam Generator Selection

  • Jeong, Ji-Hwan;Chang, Keun-Sun;Kim, Sang-Jae;Lee, Jae-Hun
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.358-369
    • /
    • 2002
  • Abundant information about analyses of single steam generator tube rupture (SGTR) events is available because of its importance in terms of safety. However, there are few literatures available on analyses of multiple steam generator tube rupture (MSGTR) events. In addition, knowledge of transients and consequences following a MSGTR event are very limited as there has been no occurrence of MSGTR event in the commercial operation of nuclear reactors. In this study, a postulated MSGTR event in an APR1400 is analyzed using thermal-hydraulic system code MARSI.4. The present study aims to examine the effects of affected steam generator selection. The main steam safety valve (MSSV) lift time for four cases are compared in order to examine how long operator response time is allowed depending on which steam generate. (S/G) is affected. The comparison shows that the cases where two steam generators are simultaneously affected allow longer time for operator action compared with the cases where a single steam generator is affected. Furthermore, the tube ruptures in the steam generator where a pressurizer is connected leads to the shortest operator response time.

중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석 (Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code)

  • 유선오;이경원;백경록;김만웅
    • 한국압력기기공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.