It is an important issue to explore classroom environments which are conducive to developing students' mathematical performance. This study explores the effects of different classroom environments (solution-demand and corresponding-time setting) on mathematical performances. Fourteen and eighteen prospective teachers were required to prove a task under different conditions respectively: a) Cognitive demand of multiple-solution corresponding time of three hours, and b) Cognitive demand of a right solution corresponding time of 20 minutes. We used SOLO as the assessment tool for mathematical performance from quality perspective. Significant differences were found in the quantity and quality of mathematical performance. The regular environment focusing on speed and accuracy were found to be directly linked to low levels of performance. The findings above provide implications to the cognitive benefits of multiple-solution demand and corresponding time setting.
Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권4호
/
pp.1100-1122
/
2023
Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.
Federated learning provides an efficient integrated model for distributed data, allowing the local training of different data. Meanwhile, the goal of multi-task learning is to simultaneously establish models for multiple related tasks, and to obtain the underlying main structure. However, traditional federated multi-task learning models not only have strict requirements for the data distribution, but also demand large amounts of calculation and have slow convergence, which hindered their promotion in many fields. In our work, we apply the rank constraint on weight vectors of the multi-task learning model to adaptively adjust the task's similarity learning, according to the distribution of federal node data. The proposed model has a general framework for solving optimal solutions, which can be used to deal with various data types. Experiments show that our model has achieved the best results in different dataset. Notably, our model can still obtain stable results in datasets with large distribution differences. In addition, compared with traditional federated multi-task learning models, our algorithm is able to converge on a local optimal solution within limited training iterations.
This paper proposes a method for the global optimization of redundancy over the whole task period for a kinematically redundant robot. The necessary conditions based on the calculus of variations for an integral type cost criterion result in a second-order differential equation. For a cyclic task, the periodic boundary conditions due to conservativity requirements are discussed. We refine the two-point boundary value problem to an initial value adjustment problem and suggest a numerical search method for providing the conservative global optimal solution using the gradient projection method. Since the initial joint velocity is parameterized with the number of the redundancy, we only search the parameter value in the space of as many dimensions as the number of degrees of redundancy. We show through numerical examples that multiple nonhomotopic extremal solutions and the generality of the proposed method by considering the dynamics of a robot.
In this paper, both dynamic constraints and kinematic constraints are considered for the analysis of manipulability of robotic systems comprised of multiple cooperating arms. Given bounds on the torques of each Joint actuator for every robot, the purpose of this study is to drive the bounds of task-space acceleration of object carried by the system. Bounds on each joint torque, described as a polytope, is transformed to the task-space acceleration through matrices related with robot dynamics, robot kinematics, object dynamics, grasp conditions, and contact conditions. A series of mathematical manipulations including the procedure calculating minimum infinite-norm solution of linear equation is applied to get the reachable acceleration bounds from given actuator dynamic constrains. Several examples including two robot systems as well as three robot system are shown with the assumptions of complete-constraint contact model(or' very soft contact') and insufficient or proper degree of freedom robot.
International Journal of Control, Automation, and Systems
/
제4권5호
/
pp.601-614
/
2006
In this paper, a study on task assignment strategies for a complex real-time network system is presented. Firstly, two task assignment strategies are proposed to improve previous strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints, and also with optimizing system utilization through period modulation of the tasks. Consequently, the strategies aim at the optimizationto optimize of system performance with while still meeting real-time constraints. The proposed task assignment strategies are devised using the genetic algorithmswith heuristic real-time constraints in the generation of new populations. The strategies are differentiated by the optimization method of the two objectives-meeting end-to-end real-time constraints and optimizing system utilization: the first one has sequential genetic algorithm routines for the objectives, and the second one has one multiple objective genetic algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies and a well-known existing task assignment strategy using the BnB(Branch and Bound) optimization are compared with one other through some simulation tests. Through the comparison of the simulation results, the most adequate task assignment strategies are proposed for some as system requirements-: the optimization of system utilization, the maximization of running tasktasks, and the minimization of the number of network node nodesnumber for a network system.
본 연구의 목적은 한 문제를 다양한 방법으로 해결할 수 있는 문제와 이에 대한 채점방법을 활용하여 학생들의 수학적 창의성을 측정함으로써 수학적 창의성을 측정할 수 있는 기반을 구축하는 것이다. 이를 위해 초등 5학년 학생 10명을 대상으로 다양한 방법으로 해결할 수 있는 문제를 활용하여 검사를 실시하여 수학적 창의성을 측정하였다. 수학적 창의성 측정을 위하여 창의성의 하위 요소인 유창성, 융통성, 독창성을 바탕으로 '새롭고, 가치 있는' 수학적 산출물을 평가할 수 있는 채점방법을 구축하여 활용하였다. 분석 결과, 수학적 창의성 점수는 학생 간 편차가 크게 나타났다. 또한 문항별로도 수학적 창의성 점수에서 차이가 나타나, 수학 학습 내용에 따라 학생들의 수학적 창의성 분석의 필요성이 대두되었다. 본 연구의 채점방법에 따르면, 유창성이 높을수록 수학적 창의성이 높았다. 그렇지만 '새롭고, 가치 있는' 수학적 창의성의 특성을 부각시키는 채점방법에 의해 유창성과 융통성이 증가할수록 답의 희소성이 낮아져 상대적으로 독창성 점수를 얻기가 어려웠다. 따라서 답의 희소성과 수학적인 측면에서 답의 가치를 동시에 고려하는 독창성 판단의 준거를 만들 필요가 대두되었다.
This paper considers a scheduling problem to minimize the total tardiness in the two-stage assembly-type flowshop. The system is composed of multiple fabrication machines in the first stage and a final-assembly machine in the second stage. Each job consists of multiple tasks, each task is performed on the fabrication machine specified in advance. After all the tasks of a job are finished, the assembly task can be started on the final-assembly machine. The completion time of a job is the time that the assembly task for the job is completed. The objective of this paper is to find the optimal schedule minimizing the total tardiness of a group of jobs. In the problem analysis, we first derive three solution properties to determine the sequence between two consecutive jobs. Moreover, two lower objective bounds are derived and tested along with the derived properties within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed properties, branch-and-bound and heuristic algorithms are evaluated through numerical experiments.
It is essential to estimating positions of multiple robots in order to perform cooperative task in common workspace. Accordingly, we propose a new approach of cooperative localization for multiple robots utilizing correlation among GPS errors in common workspace. Assuming that GPS data of individual robot are correlated strongly as the distance among robots are close, it is confirmed that the proposed method provides improved localization accuracy. In addition, we define two operational parameters to apply proposed method in multiple robot system. With mentioned two parameters, we present a practical solution to accumulated position error in traveling long distance.
병렬 컴퓨팅에 있어 NP-complete 문제인 태스크 할당문제에 대한 두 가지 휴리스틱 알고리즘을 제시한다. 할당문제는 분산 메모리 멀티컴퓨터의 멀티 프로세싱 노드에 다중통신 태스크들을 최적의 매핑을 찾는 것이다. 태스크들을 목표 시스템 구조의 노드들에 매핑시키는 목적은 해법 품질에 손상 없이 병렬 실행시간을 최소화하기 위함이다. 많은 휴리스틱 기법들이 만족한 매핑을 얻기 위해 채택되어 왔다. 본 논문에서 제시되는 휴리스틱 기법은 유전자 알고리즘(GA)과 시뮬레이티드 어닐링(SA) 기법에 기반을 둔다. 매핑 설정을 위한 총 계산 비용으로 목적함수를 수식화하고 휴리스틱 알고리즘들의 성능을 평가한다. 랜덤, 그리디, 유전자, 어닐링 알고리즘들을 사용하여 얻은 해법의 품질과 시간을 비교한다. 할당 알고리즘 시뮬레이션 연구를 통한 실험적 결과를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.