• 제목/요약/키워드: multiple sensor fusion

검색결과 92건 처리시간 0.024초

AVM 카메라와 융합을 위한 다중 상용 레이더 데이터 획득 플랫폼 개발 (Development of Data Logging Platform of Multiple Commercial Radars for Sensor Fusion With AVM Cameras)

  • 진영석;전형철;신영남;현유진
    • 대한임베디드공학회논문지
    • /
    • 제13권4호
    • /
    • pp.169-178
    • /
    • 2018
  • Currently, various sensors have been used for advanced driver assistance systems. In order to overcome the limitations of individual sensors, sensor fusion has recently attracted the attention in the field of intelligence vehicles. Thus, vision and radar based sensor fusion has become a popular concept. The typical method of sensor fusion involves vision sensor that recognizes targets based on ROIs (Regions Of Interest) generated by radar sensors. Especially, because AVM (Around View Monitor) cameras due to their wide-angle lenses have limitations of detection performance over near distance and around the edges of the angle of view, for high performance of sensor fusion using AVM cameras and radar sensors the exact ROI extraction of the radar sensor is very important. In order to resolve this problem, we proposed a sensor fusion scheme based on commercial radar modules of the vendor Delphi. First, we configured multiple radar data logging systems together with AVM cameras. We also designed radar post-processing algorithms to extract the exact ROIs. Finally, using the developed hardware and software platforms, we verified the post-data processing algorithm under indoor and outdoor environments.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

다중 수동 소나 센서 기반 에너지 인식 분산탐지 체계의 설계 및 성능 분석 (Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Multiple Passive Sonar Sensors)

  • 김송근;홍순목
    • 한국군사과학기술학회지
    • /
    • 제13권1호
    • /
    • pp.9-21
    • /
    • 2010
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and multiple passive sonar nodes. Nonrandom fusion rules are employed as the fusion rules of the sensor network. For the nonrandom fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between three sensor nodes affect the system detection performances.

레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구 (A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors)

  • 장성우;강연식
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

지상표적식별을 위한 다중센서기반의 정보융합시스템에 관한 연구 (A Study on the Multi-sensor Data Fusion System for Ground Target Identification)

  • 강석훈
    • 안보군사학연구
    • /
    • 통권1호
    • /
    • pp.191-229
    • /
    • 2003
  • Multi-sensor data fusion techniques combine evidences from multiple sensors in order to get more accurate and efficient meaningful information through several process levels that may not be possible from a single sensor alone. One of the most important parts in the data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models, and parametric classification technique is usually used in multi-sensor data fusion system by its characteristic. In this paper, we propose a novel heuristic identification fusion method in which we adopt desirable properties from not only parametric classification technique but also cognitive-based models in order to meet the realtime processing requirements.

  • PDF

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법 (An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots)

  • 배상훈;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.

다중센서 기반 차선정보 시공간 융합기법 (Lane Information Fusion Scheme using Multiple Lane Sensors)

  • 이수목;박기광;서승우
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.142-149
    • /
    • 2015
  • 단일 카메라 센서를 기반으로 한 차선검출 시스템은 급격한 조도 변화, 열악한 기상환경 등에 취약하다. 이러한 단일 센서 시스템의 한계를 극복하기 위한 방안으로 센서 융합을 통해 성능 안정화를 도모할 수 있다. 하지만, 기존 센서 융합의 연구는 대부분 물체 및 차량을 대상으로 한 융합 모델에 국한되어 차용하기 어렵거나, 차선 센서의 다양한 신호 주기 및 인식범위에 대한 상이성을 고려하지 않은 경우가 대부분이었다. 따라서 본 연구에서는 다중센서의 상이성을 고려하여 차선 정보를 최적으로 융합하는 기법을 제안한다. 제안하는 융합 프레임워크는 센서 별 가변적인 신호처리 주기와 인식 신뢰 범위를 고려하므로 다양한 차선 센서 조합으로도 정교한 융합이 가능하다. 또한, 새로운 차선 예측 모델의 제안을 통해 간헐적으로 들어오는 차선정보를 세밀한 차선정보로 정밀하게 예측하여 다중주기 신호를 동기화한다. 조도환경이 열악한 환경에서의 실험과 정량적 평가를 통해, 제안하는 융합 시스템이 기존 단일 센서 대비 인식 성능이 개선됨을 검증한다.

Generalized Gaussian Noise에서의 무선센서 네트워크의 Decision Fusion Rule의 성능 분석에 관한 연구 (Performance Evaluation of Decision Fusion Rules of Wireless Sensor Networks in Generalized Gaussian Noise)

  • 박진태;구인수;김기선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.97-98
    • /
    • 2006
  • Fusion of decisions from multiple distributed sensor nodes is studied in this work. Based on the canonical parallel fusion model, we derive the optimal likelihood ratio based fusion rule with the assumptions of the generalized Gaussian noise model and the arbitrary fading channel. This optimal fusion rule, however, requires the complete knowledge of the channels and the detection performance of local sensor nodes. To mitigate these requirements and to provide near optimum performance, we derive suboptimum fusion rules by using high and low signal-to-noise ratio (SNR) approximations to the optimal fusion rule. Performance evaluation is conducted through simulations.

  • PDF

GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선 (Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion)

  • 송하룡
    • 한국산업정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.47-56
    • /
    • 2015
  • 다중센서 시스템에서 센서 바이어스를 제거하는 센서 등록 과정은 각각의 센서가 공통된 좌표를 갖게 하기 위해 반드시 필요하다. 만약 센서 등록 과정을 적절하게 처리하지 않는다면, 거대한 추적 에러 또는 같은 목표물을 향한 다수의 허수 트랙이 발생하게 되어 추적에 실패하게 된다. 특히, 발사체 추적에 있어서 각각의 추적 장비는 반드시 적절한 센서등록 과정을 거쳐야 하며, 이 후 다중센서 융합알고리즘을 활용하면 발사체 추적 성능을 높이고 다중 추적 시스템에 정확한 지향입력으로 활용 가능하게 된다. 본 논문에서는 실시간 바이어스 추정/제거 알고리즘과 비동기 다중 센서 융합 기법을 제안하였다. 제안된 바이어스 추정 알고리즘은 GPS와 다중 레이더 간의 의사 바이어스 측정치를 활용하였고, 비동기 센서 융합알고리즘 적용을 통해 추적 성능을 향상하였다.