• 제목/요약/키워드: multiple receivers systems

검색결과 76건 처리시간 0.024초

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.

Reconfigurable Wireless Power Transfer System for Multiple Receivers

  • Hwang, Sun-Han;Kang, Chung G.;Lee, Seung-Min;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • 제16권4호
    • /
    • pp.199-205
    • /
    • 2016
  • We present a novel schematic using a 3-dB coupler to transmit radiofrequency (RF) power to two receivers selectively. Whereas previous multiple receiver supporting schemes used hardware-switched methods, our scheme uses a soft power-allocating method, which has the advantage of variable power allocation in real time to each receiver. Using our scheme, we can split the charging area and focus the RF power on the targeted areas. We present our soft power-allocating method in three main points. First, we propose a new power distribution hardware structure using a FPGA (field-programmable gate array) and a 3-dB coupler. It can reconfigure the transmitting power to two receivers selectively using accurate FPGA-controlled signals with the aid of software. Second, we propose a power control method in our platform. We can variably control the total power of transmitter using the DC bias of the drain input of the amplifier. Third, we provide the possibility of expansion in multiple systems by extending these two wireless power transfer systems. We believe that this method is a new approach to controlling power amplifier output softly to support multiple receivers.

TDOA 기반 위치탐지를 위한 DOP을 이용한 시각동기화 주수신기 선택 기법 (Method of Master Receiver Selection Using DOP for Time Synchronization in TDOA-Based Localization)

  • 김산해;송규하;곽현규
    • 한국통신학회논문지
    • /
    • 제41권9호
    • /
    • pp.1069-1080
    • /
    • 2016
  • 수동형 감시시스템과 같은 TDOA(Time Difference Of Arrival) 기반의 위치탐지시스템은 다수의 수신기를 이격 설치 후에 수신기 간 시각동기화를 수행하여 동일한 시각으로 설정하고, 수신기에 수신되는 목표 신호의 도래시간차인 TDOA를 이용하여 쌍곡선(또는 쌍곡면)의 교점을 구함으로써 목표의 2차원(또는 3차원) 위치를 추정한다. 시각동기화를 수행하기 위해서는 다수의 수신기 중에 하나가 주수신기(Master)가 되어 나머지 종수신기(Slave)들의 시간을 보정하기 위한 기준을 제공해야 한다. TDOA 기반의 위치탐지 시스템은 서로 이격되어 배치되어 있는 다수의 수신기 중에 선택되는 주수신기에 따라 위치추정정확도가 달라진다. 따라서 다수의 수신기 중에 최적의 수신기를 주수신기로 선택해야 고려하는 시스템의 배치구조에서 최적의 위치추정 성능을 도출할 수 있다. 본 논문에서는 목표와 수신기의 기하학적 배치 기반의 DOP(Dilution Of Precision) 정보를 이용하여 낮은 복잡도와 짧은 수행시간을 가지면서 시스템 내에 자동화가 용이한 주수신기 선택 방법을 제안한다.

ATSC 지상파 DTV 수신기와 역호환성을 갖는 다중 안테나 부가데이터 전송 방식 (Additional Data Transmission Scheme Using Multiple-Antennas with Backward Compatibility for Legacy ATSC Terrestrial DTV Receivers)

  • 박성익;김흥묵;김정창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.78-81
    • /
    • 2011
  • 본 논문에서는 ATSC (Advanced Television Systems Committee) 지상파 DTV (digital television) 방송 시스템에서 부가 데이터 전송률을 향상시키면서 비트 오율 (bit error rate) 성능을 개선하기 위한 다중 안테나 부가데이터 전송 방식을 제안한다. 제안된 다중 안테나 전송방식은 Alamouti 기법을 사용하여 단일 안테나 전송 방식에 비해 신호대 잡음비 이득을 얻는다. 또한, 제안하는 전송 방식은 기존의 ATSC 지상파 DTV 수신기와 역호환성을 가진다는 장점이 있다.

  • PDF

ATSC 지상파 DTV 수신기와 역호환성을 갖는 다중 안테나 부가데이터 전송 방식 (Additional Data Transmission Scheme Using Multiple-Antennas with Backward Compatibility for Legacy ATSC Terrestrial DTV Receivers)

  • 박성익;김흥묵;김정창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.247-250
    • /
    • 2011
  • 본 논문에서는 ATSC (Advanced Television Systems Committee) 지상파 DTV (digital television) 방송 시스템에서 부가 데이터 전송률을 향상시키면서 비트 오율 (bit error rate) 성능을 개선하기 위한 다중 안테나 부가데이터 전송 방식을 제안한다. 제안된 다중 안테나 전송방식은 Alamouti 기법을 사용하여 단일 안테나 전송 방식에 비해 신호대 잡음비 이득을 얻는다. 또한, 제안하는 전송 방식은 기존의 ATSC 지상파 DTV 수신기와 역호환성을 가진다는 장점이 있다.

  • PDF

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

Sum-Rate Analysis for 3D MIMO with ZF Receivers in Ricean/Lognormal Fading Channels

  • Tan, Fangqing;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2371-2388
    • /
    • 2015
  • In this paper, we investigate the performance evaluation of three dimensional (3D) multiple-input multiple-output (MIMO) systems with an adjustable base station (BS) antenna tilt angle and zero-forcing (ZF) receivers in Ricean/Lognormal fading channels. In particular, we take the lognormal shadow fading, 3D antenna gain with antenna tilt angle and path-loss into account. First, we derive a closed-form lower bound on the sum rate, then we obtain the optimal BS antenna tilt angle based on the derived lower bound, and finally we present linear approximations for the sum rate in high and low-SNR regimes, respectively. Based on our analytical results, we gain valuable insights into the impact of key system parameters, such as the BS antenna tilt angle, the Ricean K-factor and the radius of cell, on the sum rate performance of 3D MIMO with ZF receivers.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Control of Power Distribution for Multiple Receivers in SIMO Wireless Power Transfer System

  • Kim, Gunyoung;Boo, Seunghyun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • 제18권4호
    • /
    • pp.221-230
    • /
    • 2018
  • A method to control the power distribution among receivers by the load values in a single-input, multiple-output (SIMO) wireless power transfer (WPT) system is investigated. We first derive the value of loads to maximize total efficiency. Next, a simple, but effective analytical formula of the load condition for the desired power distribution ratio is presented. The derived load solutions are simply given by system figure of merits and desired power ratios. The formula is validated with many numerical examples via electromagnetic simulations. We demonstrate that with the choice of loads from this simple formula, the power can be conveniently and accurately distributed among receivers for most practical requirements in SIMO WPT systems.

청소 로봇 성능 향상을 위한 먼지 검출 시스템 (A Dust Detection Sensor System for Improvement of a Robot Vacuum Cleaner)

  • 김동회;민병철;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.896-900
    • /
    • 2013
  • In this paper, we develop a dust detection sensor system capable of identifying types of dust for an improvement of a robot vacuum cleaner. The dust detection sensor system is composed of a set of infra-red sensors: a single transmitter and multiple receivers. Given the fixed amount of light transmitted from the transmitter, the amount of light coming in multiple receiver sensors varies, depending on the type and density of dust that is passing between the transmitter and the receivers. Therefore, the type of dust can be identified by means of observing the change of the amount of light from the receiver sensors. For experiments, we use two types of dust, rice and sesame, and validate the effectiveness of the proposed method.