• Title/Summary/Keyword: multiple receivers systems

Search Result 76, Processing Time 0.019 seconds

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.

Reconfigurable Wireless Power Transfer System for Multiple Receivers

  • Hwang, Sun-Han;Kang, Chung G.;Lee, Seung-Min;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.199-205
    • /
    • 2016
  • We present a novel schematic using a 3-dB coupler to transmit radiofrequency (RF) power to two receivers selectively. Whereas previous multiple receiver supporting schemes used hardware-switched methods, our scheme uses a soft power-allocating method, which has the advantage of variable power allocation in real time to each receiver. Using our scheme, we can split the charging area and focus the RF power on the targeted areas. We present our soft power-allocating method in three main points. First, we propose a new power distribution hardware structure using a FPGA (field-programmable gate array) and a 3-dB coupler. It can reconfigure the transmitting power to two receivers selectively using accurate FPGA-controlled signals with the aid of software. Second, we propose a power control method in our platform. We can variably control the total power of transmitter using the DC bias of the drain input of the amplifier. Third, we provide the possibility of expansion in multiple systems by extending these two wireless power transfer systems. We believe that this method is a new approach to controlling power amplifier output softly to support multiple receivers.

Method of Master Receiver Selection Using DOP for Time Synchronization in TDOA-Based Localization (TDOA 기반 위치탐지를 위한 DOP을 이용한 시각동기화 주수신기 선택 기법)

  • Kim, Sanhae;Song, Kyuha;Kwak, Hyungyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1069-1080
    • /
    • 2016
  • TDOA(Time Difference Of Arrival)-based localization system such as the passive surveillance system performs the time synchronization between the receivers after separated installing multiple receivers to set the same clock for all receivers. And it estimates 2D(or 3D) location of the target by solving intersection of the multiple hyperbola(or hyperboloid) using TDOA. To perform time synchronization, one receiver must be set to the master, and it provide the reference data to compensate the clock of the rest of the slaves. The positioning accuracy of TDOA-based localization system is changed in accordance with the master that is selected among multiple receivers. So, the optimum receiver which is selected among multiple receivers must be set to master to get best performance in the considered deployment of receivers. In this paper, we propose a selection scheme of master receiver for time synchronization using DOP(Dilution Of Precision) which is based on location of the target and the multiple receivers. The proposed scheme has low complexity and short processing time, and it is easy to automate in the TDOA-based localization systems.

Additional Data Transmission Scheme Using Multiple-Antennas with Backward Compatibility for Legacy ATSC Terrestrial DTV Receivers (ATSC 지상파 DTV 수신기와 역호환성을 갖는 다중 안테나 부가데이터 전송 방식)

  • Park, Sung Ik;Kim, Heung Mook;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.78-81
    • /
    • 2011
  • In this paper, we propose an additional data transmission scheme using multiple-antennas with backward compatibility for legacy ATSC (Advanced Television Systems Committee) terrestrial DTV (digital television) receivers. The proposed scheme improves the data rate and bit error rate performance compared to the conventional single antenna transmission scheme for additional data. Also, the proposed scheme guarantees backward compatibility for legacy ATSC DTV receivers.

  • PDF

Additional Data Transmission Scheme Using Multiple-Antennas with Backward Compatibility for Legacy ATSC Terrestrial DTV Receivers (ATSC 지상파 DTV 수신기와 역호환성을 갖는 다중 안테나 부가데이터 전송 방식)

  • Park, Sung Ik;Kim, Heung Mook;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.247-250
    • /
    • 2011
  • In this paper, we propose an additional data transmission scheme using multiple-antennas with backward compatibility for legacy ATSC (Advanced Television Systems Committee) terrestrial DTV (digital television) receivers. The proposed scheme improves the data rate and bit error rate performance compared to the conventional single antenna transmission scheme for additional data. Also, the proposed scheme guarantees backward compatibility for legacy ATSC DTV receivers.

  • PDF

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

Sum-Rate Analysis for 3D MIMO with ZF Receivers in Ricean/Lognormal Fading Channels

  • Tan, Fangqing;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2371-2388
    • /
    • 2015
  • In this paper, we investigate the performance evaluation of three dimensional (3D) multiple-input multiple-output (MIMO) systems with an adjustable base station (BS) antenna tilt angle and zero-forcing (ZF) receivers in Ricean/Lognormal fading channels. In particular, we take the lognormal shadow fading, 3D antenna gain with antenna tilt angle and path-loss into account. First, we derive a closed-form lower bound on the sum rate, then we obtain the optimal BS antenna tilt angle based on the derived lower bound, and finally we present linear approximations for the sum rate in high and low-SNR regimes, respectively. Based on our analytical results, we gain valuable insights into the impact of key system parameters, such as the BS antenna tilt angle, the Ricean K-factor and the radius of cell, on the sum rate performance of 3D MIMO with ZF receivers.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Control of Power Distribution for Multiple Receivers in SIMO Wireless Power Transfer System

  • Kim, Gunyoung;Boo, Seunghyun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.221-230
    • /
    • 2018
  • A method to control the power distribution among receivers by the load values in a single-input, multiple-output (SIMO) wireless power transfer (WPT) system is investigated. We first derive the value of loads to maximize total efficiency. Next, a simple, but effective analytical formula of the load condition for the desired power distribution ratio is presented. The derived load solutions are simply given by system figure of merits and desired power ratios. The formula is validated with many numerical examples via electromagnetic simulations. We demonstrate that with the choice of loads from this simple formula, the power can be conveniently and accurately distributed among receivers for most practical requirements in SIMO WPT systems.

A Dust Detection Sensor System for Improvement of a Robot Vacuum Cleaner (청소 로봇 성능 향상을 위한 먼지 검출 시스템)

  • Kim, Dong-Hoe;Min, Byung-Cheol;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.896-900
    • /
    • 2013
  • In this paper, we develop a dust detection sensor system capable of identifying types of dust for an improvement of a robot vacuum cleaner. The dust detection sensor system is composed of a set of infra-red sensors: a single transmitter and multiple receivers. Given the fixed amount of light transmitted from the transmitter, the amount of light coming in multiple receiver sensors varies, depending on the type and density of dust that is passing between the transmitter and the receivers. Therefore, the type of dust can be identified by means of observing the change of the amount of light from the receiver sensors. For experiments, we use two types of dust, rice and sesame, and validate the effectiveness of the proposed method.