• 제목/요약/키워드: multiple oxide

검색결과 172건 처리시간 0.027초

Proposed Mechanisms of Photobiomodulation (PBM) Mediated via the Stimulation of Mitochondrial Activity in Peripheral Nerve Injuries

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • 제10권4호
    • /
    • pp.195-200
    • /
    • 2021
  • Evidence shows that nerve injury triggers mitochondrial dysfunction during axonal degeneration. Mitochondria play a pivotal role in axonal regeneration. Therefore, normalizing mitochondrial energy metabolism may represent an elective therapeutic strategy contributing to nerve recovery after damage. Photobiomodulation (PBM) induces a photobiological effect by stimulating mitochondrial activity. An increasing body of evidence demonstrates that PBM improves ATP generation and modulates many of the secondary mediators [reactive oxygen species (ROS), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), and calcium ions (Ca2+)], which in turn activate multiple pathways involved in axonal regeneration.

$ZTA-Al_2O_3$ Whisker계 복합재료의 미세구조 변화에 따른 열적, 기계적 특성에 관한 연구 (Thermo-mechanical Properties and Microstructures of $ZTA-Al_2O_3$ Whisker Composites)

  • 이문환;최성철;이응상
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.457-468
    • /
    • 1993
  • In oxide matrix-SiC(W) composites, instability and glassy phase formation due to oxidation at the high temperature and the diffusion of Si, respectively, cause brittle fracture and low reliability for ceramic materials. The mode of contribution in each mechanisms induced by matrix-whisker debonding, varies with the morphology of matrix-whisker interfaces. This work has described the dispersion behaviours and stabilization mechanisms in slip systems, and multiple toughening mechanisms by dint of two second phase different from each other when spherical ZrO2 and chemically stable Al2O3(W) is respectively added in Al2O3 matrix. To obtain complexshaped components, slip casted bodies were sintered at 1$600^{\circ}C$, 2hrs up to 98~99% R.D.. Multiple toughening mechanisms in comparison with theories reported until now will be discussed as a result of the phase analysis of ZrO2 by athermal behaviours and microstructural characterizations as well as measured mechanical properties.

  • PDF

광산인근 논토양의 카드뮴 존재형태와 쌀의 카드뮴의 함량과의 관계 (Relationship between Fraction of Cd in Paddy Soils near Closed Mine and Cd in Polished Rice Cultivated on the same Fields)

  • 김원일;박병준;박상원;김진경;권오경;정구복;이종근;김정규
    • 한국토양비료학회지
    • /
    • 제41권3호
    • /
    • pp.184-189
    • /
    • 2008
  • To assess the relationship between Cd fraction in paddy soils and Cd in polished rice, soils and rice were analyzed at the 3 Cd contaminated paddy fields near closed mines. Major Cd fractions of A field were organically bound (62.6%) and Fe-Mn oxide bound (25.3%) forms. In case of B field, major Cd fractions of B1 field were carbonate bound (46.3%) and Fe-Mn oxide bound (31.6%) form whereas B2 field were residual (54.3%) and carbonate bound (21.8%) form, respectively. It showed a huge difference of Cd fraction each other. 0.1M HCl extractable Cd in soil was positively correlated with Cd in rice. Specially, the ratios of 0.1M HCl extractable Cd against total Cd content in soils were 13.7%, 2.6%, and 0.45% in A, B1, and B2 fields, respectively. These ratio were largely affected with Cd uptake to rice grain. Also, exchangable, Fe-Mn oxide bound, and carbonate bound form, which are partially bioavailable Cd fraction to the plant, were positively correlated with Cd in rice while organically bound and residual form was not correlated. Multiple regression equation was developed with Rice Cd = -0.02861 + 0.07456 FR 1(exchangeable) + 0.00252 FR 2(carbonate bound) + 0.001075 FR 3(Fe Mn oxide bound) - 0.00095 FR 4(organically bound) - 0.00348 FR 5(residual) ($R^2=0.7893^{***}$) considering Cd fraction in soils.

삼칠화(三七花)의 대식세포로부터 LPS에 의해 유도되는 nitric oxide와 전염중성 사이토카인의 생성 억제효과 (Flower MeOH Extract of Panax Notoginseng Attenuates the Production of Nitric Oxide and Pro-inflammatory Cytokines in LPS-stimulated RA W264.7 Cells)

  • 주예진;정혜미;서운교
    • 대한한의학회지
    • /
    • 제30권1호
    • /
    • pp.150-162
    • /
    • 2009
  • Objectives: Inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 ($PGE_2$) and pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ playa critical role in inflammatory immune response. Therefore, intervention of inflammatory mediator production promises therapeutic benefit for treatment of many chronic inflammatory diseases, such as allergic asthma, rheumatoid arthritis, multiple sclerosis, septic shock and neurodegenerative diseases. In this study, the pharmacological effects of the flower MeOH extract Panax notoginseng (Notoginseng Flos; NF) on inflammation were investigated to address potential therapeutic or toxic effects. Methods: RA W264.7 cells were treated with different concentrations of NF methanol (NF-M) extract in the presence or absence of LPS ($1{\mu}g/m{\ell}$). Results: NF-M extract significantly inhibited LPS-induced production of NO, $PGE_2$ and pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in a dose-dependent manner. In addition, NF-M extract suppressed mRNA expressions and protein levels of iNOS, COX-2 and pro-inflammatory cytokines in LPS-stimulated RA W264.7 cells. Conclusion: These results indicated that NF-M extract inhibits LPS-induced production of inflammatory mediators in macrophages and demonstrated that NF-M extract possesses anti-inflammatory properties in vitro.

  • PDF

전자빔 코팅에 의해 제조된 고체산화물 연료전지용 YSZ 전해질 단층 및 다층박막의 기계적 특성 연구 (A Study on the Mechanical Properties of Single and Multiple layer Thin Film of YSZ Electrolyte Produced by E-beam Coating for Solid Oxide Fuel Cells)

  • 임해상;김희재;박종완
    • 한국재료학회지
    • /
    • 제9권8호
    • /
    • pp.792-797
    • /
    • 1999
  • 고체 산화물 연료전지의 전해질로 주로 사용되는 8mol.%$Y_2$$O_3$-$ZrO_2$는 전기 전도성은 우수하나 기계적 특성이 좋지 못하므로, 전기적 특성과 기계적 특성이 동시에 우수한 고체산화물 연료전지의 전해질의 개발이 요구되고 있다. 본 연구는 이러한 두 가지 요구조건을 충족시키기 위해서 수행되어졌다. 단위전지의 공기극 재료인 LSM(La(sub)0.75Sr(sub)0.25MnO$_3$) 기판과 Si wafer를 기판으로 기계적 성질이 우수한 3mol.%의 YSZ(3-YSZ)와 전기 전도성이 우수한 8mol.%의 YSZ(8-YSZ)를 각각 단층 및 다층 박막의 네 가지 형태로 전자빔 코팅에 의해 전해질 막을 제작하였다. 박막층의 분석결과, 결정조직은 증착된 3-YSZ 박막의 정방정 및 일부 단사정 구조, 8-YSZ 박막은 입방정 구조의 결정성이 나타났다. 단층막 보다 다층막이 낮은 내부 응력을 보였으며, 다층막이 기존의 8-YSZ 단층막의 열처리 전, 후와 비슷한 미세 경도 값을 보였다.

  • PDF

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상 (Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays)

  • 이삼동;김경국;박재철;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF

Preparation and Antitumor Activity of a Tamibarotene-Furoxan Derivative

  • Wang, Xue-Jian;Duan, Yu;Li, Zong-Tao;Feng, Jin-Hong;Pan, Xiang-Po;Zhang, Xiu-Rong;Shi, Li-Hong;Zhang, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6343-6347
    • /
    • 2014
  • Multi-target drug design, in which drugs are designed as single molecules to simultaneously modulate multiple physiological targets, is an important strategy in the field of drug discovery. QT-011, a tamibarotene-furoxan derivative, was here prepared and proposed to exert synergistic effects on antileukemia by releasing nitric oxide and tamibarotene. Compared with tamibarotene itself, QT-011 displayed stronger antiproliferative effects on U937 and HL-60 cells and was more effective evaluated in a nude mice U937 xenograft model in vivo. In addition, QT-011 could release nitric oxide which might contribute to the antiproliferative activity. Autodocking assays showed that QT-011 fits well with the hydrophobic pocket of retinoic acid receptors. Taken together, these results suggest that QT-011 might be a highly effective derivative of tamibarotene and a potential candidate compound as antileukemia agent.

산화아연계 MOV 소자의 미세구조 및 전기적 특성에 이산화 규소가 미치는 영향 (Effects of $SiO_2$ Additive on the Microstructure and Electrical Characteristics of Zinc Oxide-Based MOV)

  • 정순철;이외천;남춘우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1361-1363
    • /
    • 1997
  • Zinc oxide-based MOV was fabricated with $SiO_2$ additive ranging from 0.5 to 4.0 mol%, and the microstructure and electrical characteristics were investigated. $Zn_2SiO_4$ phase formed by $SiO_2$ additive was distributed at ZnO grains, grain boundaries, and multiple grain junctions. As the content of $SiO_2$ additive increases, average grain size decreased from 40.6 to $26.9{\mu}m$ due to the Pinning effect by $Zn_2SiO_4$ at grain boundaries Breakdown voltage and nonlinear exponent increased, and leakage current decreased in the range of $11.2{\sim}6.14{\mu}A$ with an increasing $SiO_2$. Donor concentration and interface state density decreased, and barrier height increased in the range of $0.71{\sim}1.04eV$ with an increasing $SiO_2$. While, as the content of $SiO_2$ additive, apparent dielectric constant decreased, peak frequency of dissipation factor decreased in the range of $6.45{\times}10^5{\sim}3.00{\times}10^5Hz$, and dissipation peak was $0.31{\sim}0.22$ at Peak frequency.

  • PDF

ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용 (Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells)

  • 조영수;우채영;홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.