• Title/Summary/Keyword: multiple oxide

Search Result 173, Processing Time 0.031 seconds

Adsorption Characteristics of Arsenic using the Recycled Aluminium Oxide (재생 알루미늄 산화물을 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Kim, Won-Gee;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.486-490
    • /
    • 2011
  • As(V) adsorption on aluminum oxide powder which was recycled from industrial wastes containing aluminum hydroxide was evaluated. Aluminum oxide powder in this study was prepared by calcinating aluminum hydroxide wastes at$550^{\circ}C$. Spectroscopic analysis indicated that the aluminum hydroxide wastes were changed to aluminum oxide by calcination. Arsenic adsorption isotherm was conducted with variation of ionic strength and multiple-ion systems using Ca(II) and Cu(II). As(V) removal showed typical anionic adsorption characteristics that the removal efficiency decreased with increasing pH in single As(V) system as well as in binary and ternary system. More than 80% of As(V) at an initial concentration of $5{\times}10^{-5}$ M was removed from aluminum oxide powder in As(V) single system. The effect of ionic strength on As(V) adsorption was negligible, which indicated the strong bonding between aluminum oxide powder and As(V). The removal efficiency of As(V) was higher in a binary system with Cu(II) than in a binary system with Ca(II).

Cell Characteristics of a Multiple Alloy Nano-Dots Memory Structure

  • Kil, Gyu-Hyun;Lee, Gae-Hun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.240-240
    • /
    • 2010
  • A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (~5.2 eV) and extremely high dot density (${\sim}\;1.2{\times}10^{13}/cm^2$) was fabricated. Its structural effect for multiple layers was evaluated and compared to one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with 2-4 multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler-Nordheim (FN)-tunneling could be a candidate structure for future flash memory.

  • PDF

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4393-4411
    • /
    • 2022
  • In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

A Comparative Study on Variability of Oxidants Out of Air Pollution Materials in Seoul: Metropolitan vs. Suburban Area (서울지역의 대기오염 물질중 산화성 물질의 지역간 차이에 대한 연구)

  • 김정수
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 1981
  • A Continuous monitoring of Air Pollution in city of Seoul was carried out from January 1 to December 31 of 1979 at two selected sites, Kwanghwamun observatory and Kwanag observatory. The measured data were averaged on monthly basis. The maximun value of oxidant pollution was observed in July, and the minimum in February. It is the purpose of this study to determine the effect of hydrocarbon, nitrogenoxide, wind velocity and ambient temprature on the observed values of oxidant pollution for the above two months. The results of the study may be summarized as follows. 1) The oxidant concentration in February was higher than in July by about 2 times in both downtown area and the suburbia. The concentration in downtown area was $25.75\pm 4.75ppb$, and that in suburbia was $29.83\pm 5.16ppb$. As for the oxidant concentration in July, it was observed that the suburban area ($26.464\pm 7.59ppb$) had about 2.8 times higher value than the downtown area ($9.284\pm 1.55ppb$). 2) The peak oxidant concentration of suburban area during the daytime is occured from noon to 5:00 P.M.. These patterns are similar to the classical patterns, but the peak Oxidant Concentration of downtown area in February was occured at 9:00A.M. 3) The overall level of nitrogen oxide pollution was much higher in downtown area than in suburban area. Two peaks of nitrogen oxide concentration occured at 10 A.M. and 12 midnight in downtown area. This observation agrees with the report that the air pollution is higher in the area where the pollution sources are concentrated. 4) The multiple correlation analysis for the oxidant and the other variables measured in February in downtown area showed close correlation with nitrogen oxide and ambient temprature. The multiple correlation coefficient of oxidant with nitrogen oxide was 0.872, and that with nitrogen oxide and temperature simultaneously was 0.903. The multiple correlation equation used for this study may be expressed as follows:

  • PDF

Development of Gate Structure in Junctionless Double Gate Field Effect Transistors (이중게이트 구조의 Junctionless FET 의 성능 개선에 대한 연구)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.514-519
    • /
    • 2015
  • We propose the multiple gate structure of double gate junctionless metal oxide silicon field oxide transistor (JL MOSFET) for device optimization. Since different workfunction within multiple metal gates, electric potential nearby source and drain region is modulated in accordance with metal gate length. On current, off current and threshold voltage are influenced with gate structure and make possible to meet some device specification. Through the device simulation work, performance optimization of double gate JL MOSFETs are introduced and investigated.

Effect of Multiple Lightning Impulse Currents on Zinc Oxide Arrester Blocks (산화아연 피뢰기 소자의 다중 뇌 임펄스 특성)

  • Lee, Bok-Hee;Kang, Sung-Man;Pak, Keon-Young;Choi, Hwee-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.22-24
    • /
    • 2003
  • In this work, in order to investigate the effect of multiple lightning impulse currents on zinc oxide arrester blocks. We have been designed and fabricated a multi-impulse generator which can produce quintuple voltages with $1.2/50{\mu}s$ to 100kV and quintuple currents with $8/20{\mu}s$ to 12kA and we have evaluated the characteristics of zinc oxide arrester block using several electrical and physical methods after the multi-impulse test. It was found that the multi-impulse failures of ZnO arrester blocks were mainly caused by surface flashover and the multi-impulse currents test would be more suitable than single impulse current test in evaluation of the characteristics of zinc oxide arrester blocks corresponding to actual situations.

  • PDF

Independent Regulation of Endothelial Nitric Oxide Synthase by Src and Protein Kinase A in Mouse Aorta Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • Endothelial nitric oxide synthase (eNOS) plays a critical role in vascular biology and pathophysiology. Its activity is regulated by multiple mechanisms such as calcium/calmodulin, protein-protein interactions, sub-cellular locations and phosphorylation at various sites. Phosphorylation of eNOS-Ser1177 (based on mouse sequence) has been identified as an important mechanism of eNOS activation. However, signaling pathway leading to it phosphorylation remains controversial. The regulation of eNOS-Ser1177 phosphorylation by Src and protein kinase A (PKA) was investigated in the present study using cultured mouse aorta endothelial cells. Expression of a constitutively active Src mutant in the cells enhanced phosphorylation of eNOS and protein kinase B (Akt). The Src-stimulated phosphorylation was not attenuated by the expression of a dominant negative PKA regulatory subunit. Neither activation nor inhibition of PKA activity had any significant effect on tyrosine phosphorylation of activation or inactivation site in Src. Based on the results of this study, it is suggested that Src/Akt pathway and PKA signaling may regulate eNOS phosphorylation independently. The existence of multiple mechanisms for eNOS phosphorylation may guarantee endothelial nitric oxide production in various cellular contexts which is essential for maintenance of vascular health.

Copper Oxide Growing Characteristics of PVC Insulated Wire and Application to the Fire Investigation (비닐절연전선의 산화물 성장 특성과 화재조사에의 적용)

  • Kim, Hyang-Kon;Choi, Chung-Seog;Kim, Dong-Ook;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • This paper describes characteristics for copper oxide growth of polyvinyl chloride(PVC) insulated wires by series arc. In this experiment, 600V IV wires were used, and characteristics of oxide growth and ignition process were analyzed in case load was 300W, 460W and 600W, respectively. In the result of experiment, covering materials were molten, carbonized and ignited, whereas, oxidized materials were grown in conducting material. During copper oxide was growing, contact voltages and power dissipations increased. When there is copper oxide growth, the waveform of current showed sinusoidal waveform, and the waveform of voltage showed modified waveform. Oxidized materials were heated at about $905^{\circ}C$, surface structure showed irregular shapes, and cross-section showed multiple cracks. And, the results of this experiment were applied to the fire cause analysis of fire evidence collected at the fire scene.

Tunnel Barrier Engineering for Non-Volatile Memory

  • Jung, Jong-Wan;Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.32-39
    • /
    • 2008
  • Tunnel oxide of non-volatile memory (NVM) devices would be very difficult to downscale if ten-year data retention were still needed. This requirement limits further improvement of device performance in terms of programming speed and operating voltages. Consequently, for low-power applications with Fowler-Nordheim programming such as NAND, program and erase voltages are essentially sustained at unacceptably high levels. A promising solution for tunnel oxide scaling is tunnel barrier engineering (TBE), which uses multiple dielectric stacks to enhance field-sensitivity. This allows for shorter writing/erasing times and/or lower operating voltages than single $SiO_2$ tunnel oxide without altering the ten-year data retention constraint. In this paper, two approaches for tunnel barrier engineering are compared: the crested barrier and variable oxide thickness. Key results of TBE and its applications for NVM are also addressed.

Coating Properties of Single and Multi-Layer Graphene Oxide on a Polystyrene Surface (산화그래핀 층수에 따른 폴리스타이렌 표면 코팅 특성)

  • Lee, Jihoon;Park, Jaebum;Park, Danbi;Huh, Jeung Soo;Lim, Jeong Ok
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.420-426
    • /
    • 2021
  • Graphene, a new material with various advantageous properties, has been actively used in various fields in recent years. Applications of graphene oxide are increasing in combination with other materials due to the different properties of graphene oxide, depending on the number of single and multiple layers of graphene. In this study, single-layer graphene oxide and multi-layer graphene oxide are spray coated on polystyrene, and the physicochemical properties of the coated surfaces are characterized using SEM, Raman spectroscopy, AFM, UV-Vis spectrophotometry, and contact angle measurements. In single-layer graphene oxide, particles of 20 ㎛ are observed, whereas a 2D peak is less often observed, and the difference in surface height increases according to the amount of graphene oxide. Adhesion increases with an increase in graphene oxide up to 0.375 mg, but decreases at 0.75 mg. In multi-layer graphene oxide, particles of 5 ㎛ are observed, as well as a 2D peak. According to the amount of graphene oxide, the height difference of the surface increases and the adhesive strength decreases. Both materials are hydrophilic, but single-layer graphene oxide has a hydrophilicity higher than that of multi-layer graphene oxide. We believe that multi-layer graphene oxide and single-layer graphene oxide can be implemented based on the characteristics that make them suitable for application.