Journal of the Korean Data and Information Science Society
/
제16권3호
/
pp.665-682
/
2005
The sample reuse bootstrap technique has been successful to attract both applied and theoretical statisticians since its origination. In recent years a good deal of attention has been focused on the applications of bootstrap methods in regression analysis. It is easier but more accurate computation methods heavily depend on high-speed computers and warrant tough mathematical justification for their validity. It is now evident that the presence of multiple unusual observations could make a great deal of damage to the inferential procedure. We suspect that bootstrap methods may not be free from this problem. We at first present few examples in favour of our suspicion and propose a new method diagnostic-before-bootstrap method for regression purpose. The usefulness of our newly proposed method is investigated through few well-known examples and a Monte Carlo simulation under a variety of error and leverage structures.
Communications for Statistical Applications and Methods
/
제11권3호
/
pp.643-655
/
2004
L$_1$-estimator in the linear regression model is widely recognized to have superior robustness in the presence of vertical outliers. While the L$_1$-estimation procedures and algorithms have been developed quite well, less progress has been made with the hypothesis test in the multiple L$_1$-regression. This article suggests computer-intensive resampling approaches, jackknife and bootstrap methods, to estimating the variance of L$_1$-estimator and the scale parameter that are required to compute the test statistics. Monte Carlo simulation studies are performed to measure the power of tests in small samples. The simulation results indicate that bootstrap estimation method is the most powerful one when it is employed to the likelihood ratio test.
프로스포츠 선수들의 연봉은 선수들의 개인 성적과 팀에 대한 기여도 등으로 결정된다는 가정하에 프로농구와 프로야구 선수들의 전년도 성적으로 다음해 연봉을 예측 분석하였다. 분석에 있어서 data visualization 기법을 통해 변수사이의 관계, 이상점 발견, 모형진단등을 하였다. 다중선형회귀 모형(Multiple Linear Regression)과 트리모형(Regression Tree)을 이용해서 자료를 분석하고 모델간 비교를 했으며, Cross-Validation을 이용해서 최적모델을 선택하였다. 특히, 자동으로 변수선택을 하는 stepwise regression방법을 그냥 사용하기보다는 먼저 설명변수들 사이의 관계나 설명변수와 반응변수 사이의 관계등을 조사하고 나서 이를 통해 선택된 변수들을 가지고 stepwise regression과 regression tree 방법론을 이용해서 적절한 변수 및 최종 모형을 선택하였다. 분석결과, 프로농구의 경우에는 경기당 득점, 어시스트, 자유투 성공수, 경력 등이 중요한 변수였고, 프로야구 투수의 경우에는 경력, 9이닝 당 삼진 수, 방어율, 피홈런 수 등이 중요한 변수였고, 프로야구 타자의 경우에는 경력, 안타 수, FA(자유계약)유무 여부 등이 중요한 변수였다.
본 연구는 Media공법을 적용하고 있는 하수처리장의 실데이터를 활용하여 다중회귀분석을 통해 유출수질을 예측하는 모형을 구현하였다. 다중회귀분석은 2011년 1년간 데이터를 사용하였으며, 변수선택법 적용, 이상치와 영향치 제거, 변수의 로그변환에 따른 CASE별 연구를 수행하였다. 다중회귀분석으로 구축된 예측 모형으로 예측정확도를 검토한 결과, 2차침전지 유출수 $COD_{Mn}$는 0.87 이상, T-N은 0.81 이상으로 검토되었으며, 구축된 다중회귀모형을 이용하여 유출수가 방류수질기준을 초과하지 않는 운전조건의 범위를 설정할 수 있을 것으로 판단된다. 결론적으로 설정된 운전조건 범위 안에서 수질측면과 에너지 비용측면으로 하수처리장 운영시 운전자에게 적절한 운전 가이드를 제공할 수 있을 것으로 판단된다.
The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.
Purpose: This research has been conducted in order to understand the major factors that affect self-esteem of adolescents. Methods: Data was collected by questionnaires from 1155 students at middle and high school in Seoul and Kyungkido, Korea. The Instrument tools utilized in this study were self-esteem, body-image, problematic behavior, depression, school adjustment, social support tool and thoroughly modified to verify validity and reliability. The collected data have been analyzed using SPSS 11.0 program. The variable of family harmony and counseling partner was treated as a dummy variable. Seven outliers which were bigger than 3 in absolute value were found, so after taking them off, Multiple Regression was used for further analysis. Result: The major factors that affect self-esteem of adolescents were depression, social support, body-image, problematic behavior, school adjustment, and family harmony, which explained $54.7\%$ of self-esteem. Conclusion: It has been confirmed that the regression equation model of this research may serve as a self-esteem prediction factors in adolescents.
The purpose of this study was to examine the physical environmental factors in coffee shops which determine customer brand loyalty, and to investigate the mediated effects of customer satisfaction and emotional responses on the causal relationship between the physical environmental factors and brand loyalty. A sample of 400 coffee shop customers was collected from Seoul and Gyeonggi in March, 2011 through a self-administered questionnaire. 351 of 400 subjects were used for validity and reliability analysis. 12 outliers were removed from the analysis, and 339 subjects were used to derive the results. Multiple linear regression and stepwise regression were conducted after the construct validity and reliability. The results can be summarized as follows: (1) Physical environmental factors in coffee shops consists of 5 dimensions such as facility aesthetics, cleanliness, ambiance, layout, and internet environment. (2) Facility aesthetics, ambiance, and internet environment had an influence on brand loyalty. (3) The effects of cleanliness and layout on brand loyalty, were not significant on multivariate analysis. However, the relationship between cleanliness and brand loyalty was mediated by emotional responses and also the relationship between layout and brand loyalty was mediated by customer satisfaction. (4) The mediating effects of customer satisfaction were higher than those of emotional responses.
Finding a planar surface on 3D space is very important for efficient and safe operation of a mobile robot. In this paper, we propose a method using a plane detection cell (PDC) and iterative randomized Hough transform (IRHT) for finding the planar region from a 3D range image. First, the local planar region is detected by a PDC from the target area of the range image. Each plane is then segmented by analyzing the accumulated peaks from voting the local direction and position information of the local PDC in Hough space to reduce effect of noises and outliers and improve the efficiency of the HT. When segmenting each plane region, the IRHT repeatedly decreases the size of the planar region used for voting in the Hough parameter space in order to reduce the effect of noise and solve the local maxima problem in the parameter space. In general, range images have many planes of different normal directions. Hence, we first detected the largest plane region and then the remained region is again processed. Through this procedure, we can segment all planar regions of interest in the range image.
In order to statistically predict $O_3$ levels in Seoul, the study used the TMS (telemeted air monitoring system) data from the Department of Environment, which have monitored at 20 sites in 1989 and 1990. Each data in each site was characterized by 6 major criteria pollutants ($SO_2, TSP, CO, NO_2, THC, and O_3$) and 2 meteorological parameters, such as wind speed and wind direction. To select proper variables and to determine each pollutant's behavior, univariate statistical analyses were extensively studied in the beginning, and then various applied statistical techniques like cluster analysis, regression analysis, and expert system have been intensively examined. For the initial study of high level $O_3$ prediction, the raw data set in each site was separated into 2 group based on 60 ppb $O_3$ level. A hierarchical cluster analysis was applied to classify the group based on 60 ppb $O_3$ into small calsses. Each class in each site has its own pattern. Next, multiple regression for each class was repeatedly applied to determine an $O_3$ prediction submodel and to determine outliers in each class based on a certain level of standardized redisual. Thus, a prediction submodel for each homogeneous class could be obtained. The study was extended to model $O_3$ prediction for both on-time basis and 1-hr after basis. Finally, an expect system was used to build a unified classification rule based on examples of the homogenous classes for all of sites. Thus, a concept of high level $O_3$ prediction model was developed for one of $O_3$ alert systems.
The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve, we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing lines reconstruction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.