• Title/Summary/Keyword: multiple network interfaces

Search Result 80, Processing Time 0.025 seconds

A Development of Cipher Device based on Embedded Linux for Serial Communication in SCADA (임베디드 리눅스 기반의 SCADA 직렬통신 구간 암호화 장치 개발)

  • Lee, Jong-Joo;Kim, Seog-Joo;Kang, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • The Supervisory Control and Data Acquisition Systems (SCADA) system provides monitoring, data gathering, analysis, and control of the equipment used to manage most infrastructure. The SCADA Network is implemented in a various manner for larger utilities, and multiple types of protocol and communication interfaces are used to network the control center to remote sites. The existing SCADA equipment and protocols were designed and implemented with availability and efficiency, and as a result security was not a consideration. So, performance, reliability, flexibility and safety of SCADA systems are robust, while the security of these systems is often weak. This makes some SCADA networks potentially vulnerable to disruption of service, process redirection, or manipulation of operational data that could result in public safety concerns and/or serious disruptions to the infrastructure. To reduce the risks, therefore, there is a need to have a security device such as cipher devices or cryptographic modules for security solutions. In this paper we develop an embedded cipher device for the SCADA equipment. This paper presents a cipher device designed to improve the security of its networks, especially in the serial communication.

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Performance Analysis of Mesh WLANs based on IEEE 802.11 protocols (IEEE 802.11 프로토콜 기반 메쉬 무선랜의 성능분석)

  • Lee, Kye-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2008
  • Mesh WLANs, which consist of wireless mesh routers connecting each other in a mesh topology and self-operate after their autoconfiguration, have several advantages in convenience, swiftness and flexibility of deployment and operation over existing WLANs the expansions of which are done by connecting the APs with wires. However, many technical issues still remain to be solved. Among them, network performance degradations due to the interference between the adjacent hops in multi-hop mesh WLANs, and the reusability of the existing wireless network protocols are critical problems to be answered. This work evaluates the VoIP support performance of IEEE 802.11a/g-based mesh WLANs with multiple wireless interfaces with simulations. The results show that there exit an unfairness in VoIP packet delay performances among mobile routers located at different hops, and that although the capacity of the admitted calls can be increased by increasing the size of voice packet payload it is far less than the expected one. This suggests that the existing 802.11 MAC protocols have their limitation when applied in mesh networks and their enhancement or even a newer one nay be required.

Channel Assignment and Routing using Traffic Profiles in Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 프로파일을 고려하는 채널 할당 및 라우팅)

  • Park, Sook-Young;Lee, Sang-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.374-385
    • /
    • 2010
  • Wireless mesh networks can be deployed for various networks from home networking to last-mile broadband Internet access. Wireless mesh networks are composed of mesh routers and mesh clients. In these networks, static nodes form a multi-hop backbone of a large wireless access network that provides connectivity to end-users' mobile terminals. The network nodes cooperate with each other to relay data traffic to its destinations. In order to increase connectivity and better performance, researchers are getting interested in multi-channel and multi-interface wireless mesh networks. In these networks, non-overlapping multiple frequency channels are used simultaneously to increase the aggregate bandwidth available to end-users. Recently, researches have focused on finding suitable channel assignments for wireless network interfaces, equiped in a mesh node, together with efficient routing to improve overall system throughput in wireless mesh networks. This goal can be achieved by minimize channel interference. Less interference among using channels in a network guarantees more aggregated channel capacity and better connectivity of the networks. In this thesis, we propose interference aware channel assignment and routing algorithms for multi-channel multi-hop wireless mesh networks. We propose Channel Assignment and Routing algorithms using Traffic Profiles(CARTP) and Routing algorithms allowing detour routing(CARTP+2). Finally, we evaluate the performance of proposed algorithms in comparison to results from previous methods using ns-2 simulations. The simulation results show that our proposed algorithms can enhance the overall network performance in wireless mesh networks.

An Adaptive USB(Universal Serial Bus) Protocol for Improving the Performance to Transmit/Receive Data (USB(Universal Serial Bus)의 데이터 송수신 성능향상을 위한 적응성 통신방식)

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.327-332
    • /
    • 2004
  • USB(Universal Serial Bus) is one of the most popular communication interfaces. When USB is used in an extended range, especially configurating In-home network by connecting multiple digital devices each other, USB interface uses the bandwidth in the way of TDM(Time Division Multiplexing) so that the bottleneck of bus bandwidth can be brought. In this paper, the more effective usage of bus bandwidth to overcome this situation is introduced. Basically, in order to realize the system for transferring realtime moving picture data among digital information devices, we analyze USB transfer types and Descriptors and introduce the method to upgrade detailed performance of Isochronous transfer that is one of USB transfer types. In the case that Configuration descriptor of a device has Interface descriptor that has two AlternateSetting, if Isochronous transfers are not processed smoothly due to excessive bus traffic, the application of the device changes AlternateSetting of the Interface descriptor and requires a new configuration by SetInterface() request. As a result of this adaptive configuration, the least data frame rate is guaranteed to a device that the sufficient bandwidth is not alloted. And if the bus traffic is normal, the algorithm to return to the original AlteranteSetting is introduced. this introduced method resolve the bottleneck of moving picture transfer that can occur in home network connected by multiple digital devices.

  • PDF

Design and Implementation of a Reconfigurable Communication Terminal Platform (재구성 가능한 통신 단말 플랫폼의 설계 및 구현)

  • Lee, Kyoung-Hak;Ko, Hyung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2007
  • SDR technology is a fundamental wireless access technology that combines and accommodates multiple wireless communication standards in one transceiver system through just modifying software using modular communication platforms without any hardware modifications for RF and IF signal processing on the basis of high performance DSP devices. Various communication systems that are designed under diverse and complex network environments require the communication platforms on the basis of SDR supporting reorganization to guarantee simple and fast communication interfaces among the respective wireless networks. This paper introduces a main idea on the implementation of platform on the basis of SDR and a communication platform is designed for experiments that is composed of a DSP board with TMS320C6713 CPU, a FPGA board processing IF signals, and a module with RF transceiver processing wireless LAN frequency bandwidth. Various modulation schemes(BPSK, QPSK, and 16QAM) used in communication systems are applied and tested on the designed platform and the test results shows that it is possible to design a reconfigurable communication terminal platform.

  • PDF

Communication Service Architecture for CORBA -Based Multimedia Multicast Application (CORBA 기반의 멀티미디어 멀티캐스트 애플리케이션을 위한 통신 서비스 아키텍쳐)

  • Ma, Yeong-Sik;Gang, U-Sik;An, Sun-Sin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.771-781
    • /
    • 1999
  • 오늘날의 컴퓨팅 환경은 통신 네트워크의 복잡성과 다양한 멀티미디어 서비스 처리를 위해 객체지향 기술을 분산 시스템에 도입하고 통신망을 소프트웨어 계층적 모델로 구조화한 개방형 정보 통신망 구조 연구가 활발히 진행되고 있다. 본 논문은 분산환경에서 멀티미디어 스트림 데이타를 전송하기 위한 아키텍쳐에 관한 모델의 설계 및 구현에 관한 것으로 분산 환경에서 멀티미디어 스트림 데이타를 효율적으로 전송할 수 있는 구조를 제시하고 있다. 설계한 구조는 Point-to-Point와 멀티캐스트를 지원하며 컴퓨터 통신망에서 멀티캐스트 연결을 효율적으로 관리하고 추후 기능 확장 및 기능 변경이 용이하도록 모듈화하고 유연성을 가지는 연결 관리 구조를 설계하고 구현하였다. 신호기능은 CORBA(Common Object Request Broker Architecture)의 ORB를 이용하여 실현하였으며, 데이타 전송 기능은 TCP/IP연결을 이용하였다. 이렇게 신호처리 부분과 데이타 전송 부분을 독립적으로 만들어서 하부망 기술에 독립적인 연결 관리 구조를 채택하고 있으므로 향후 다른 환경에서도 신호처리 부분을 그대로 적용할 수 있다. 분산 객체 개념을 적용하여 연결 관리 기능을 분산 객체화 하였으며 각 분산 객체간 인터페이스를 OMG(Object Management Group) IDL(Interface Definition Language)로 정의함으로써 유연성을 갖도록 하였다.AbstractThis paper proposes communication service architecture to support dynamic communication configuration and multiple connection management which are required to handle a variety of multimedia multicast application. Our communication service architecture was designed to fulfil the objectives as the following:- To build a common networking system for various multimedia multicast services- To build a platform for rapid service development and provisioning- To provide service networking independent on transport network technologiesWe implemented communication service architecture based on Common Object Request Broker Architecture (CORBA) for multimedia multicast applications. Our communication service architecture is distributed and object-oriented for extensibility and easy modification. The interfaces between the distributed objects are specified in (Object Management Group) OMGs Interface Definition Language.

A Mobile P2P Message Platform Enabling the Energy-Efficient Handover between Heterogeneous Networks (이종 네트워크 간 에너지 효율적인 핸드오버를 지원하는 모바일 P2P 메시지 플랫폼)

  • Kim, Tae-Yong;Kang, Kyung-Ran;Cho, Young-Jong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.724-739
    • /
    • 2009
  • This paper suggests the energy-efficient message delivery scheme and the software platform which exploits the multiple network interfaces of the mobile terminals and GPS in the current mobile devices. The mobile terminals determine the delivery method among 'direct', 'indirect', and 'WAN' based on the position information of itself and other terminals. 'Direct' method sends a message directly to the target terminal using local RAT. 'Indirect' method extends the service area by exploiting intermediate terminals as relay node. If the target terminal is too far to reach through 'direct' or 'indirect' method, the message is sent using wireless WAN technology. Our proposed scheme exploits the position information and, thus, power consumption is drastically reduced in determining handover time and direction. Network simulation results show that our proposed delivery scheme improves the message transfer efficiency and the handover detection latency. We implemented a message platform in a smart phone realizing the proposed delivery scheme. We compared our platform with other typical message platforms from energy efficiency aspect by observing the real power consumption and applying the mathematical modeling. The comparison results show that our platform requires significantly less power.

Distance-Based Channel Assignment with Channel Grouping for Multi-Channel Wireless Mesh Networks (멀티채널 무선 메쉬 네트워크에서의 채널 그룹을 이용한 거리 기반 채널 할당)

  • Kim, Sok-Hyong;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1050-1057
    • /
    • 2008
  • Wireless Mesh Networks (WMNs) have recently become a hot issue to support high link capacity in wireless access networks. The IEEE 802. I 1 standard which is mainly used for the network interface technology in WMNs supports up to 3 or 12 multiple channels according to the IEEE 802.11 specification. However, two important problems must be addressed when we design a channel assigmnent algorithm: channel dependency problem and channel scanning delay. The former occurs when the dynamic channel switching of an interface leads to the channel switching of other interfaces to maintain node connectivity. The latter happens per channel switching of the interface, and affects the network performance. Therefore, in this paper, we propose the Distance-Based Channel Assigmnent (DB-CA) scheme for multi-channel WMNs to solve such problems. In DB-CA, nodes just perform channel switching without channel scanning to communicate with neighboring nodes that operate on different channels. Furthermore, DB-CA minimizes the interference of channels being used by nodes near the gateway in WMNs. Our simulation results show that DB-CA achieves improved performance in WMNs.

Power Aware Vertical Handoff Algorithm for Multi-Traffic Environment in Heterogeneous Networks (이기종 무선망에서의 다양한 트래픽 환경이 고려된 에너지 효율적인 수직적 핸드오프 기법에 대한 연구)

  • Seo, Sung-Hoon;Lee, Seung-Chan;Song, Joo-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.679-684
    • /
    • 2005
  • There are a few representative wireless network access technologies used widely. WWAN is celluar based telecommunication networks supporting high mobility, WLAN ensures high data rate within hotspot coverage, and WDMB support both data and broadcasting services correspondingly. However, these technologies include some limitations especially on the mobility, data rate, transmission direction, and so on. In order to overvome these limitations, there are various studies have been proposed in terms of 'Vortical Handoff' that offers seamless connectivity by switching active connection to the appropriate interface which installed in the mobile devices. In this paper, we propose the interface selection algorithm and network architecture to maximize the life time of entire system by minimizing the unnecessary energy consumption of another interfaces such as WLAN, WDMB that are taken in the user equipment. In addition, by using the results of analyzing multiple types of traffic and managing user buffer as a metric for vertical handoff, we show that the energy efficiency of our scheme is $75\%$ and $34\%$ than typical WLAN for WDMB and WLAN preferred schemes, correspondingly.