• Title/Summary/Keyword: multiple motions

Search Result 184, Processing Time 0.023 seconds

A Nonlinear Information Filter for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1669-1674
    • /
    • 2004
  • In this paper, a nonlinear information filter (IF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, a nonlinear IF is used in place of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

  • PDF

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.310-318
    • /
    • 2004
  • In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, an UKF is used because of the drawbacks of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

Characterization of earthquake ground motion of multiple sequences

  • Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.629-647
    • /
    • 2012
  • Multiple acceleration sequences of earthquake ground motions have been observed in many regions of the world. Such ground motions can cause large damage to the structures due to accumulation of inelastic deformation from the repeated sequences. The dynamic analysis of inelastic structures under repeated acceleration sequences generated from simulated and recorded accelerograms without sequences has been recently studied. However, the characteristics of recorded earthquake ground motions of multiple sequences have not been studied yet. This paper investigates the gross characteristics of earthquake records of multiple sequences from an engineering perspective. The definition of the effective number of acceleration sequences of the ground shaking is introduced. The implication of the acceleration sequences on the structural response and damage of inelastic structures is also studied. A set of sixty accelerograms is used to demonstrate the general properties of repeated acceleration sequences and to investigate the associated structural inelastic response.

NONLINEAR MOTIONS IN A HANGING CABLE

  • OH, HYEYOUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.521-536
    • /
    • 2015
  • We investigate the nonlinear motions of discrete loaded cable with different periodic forcing. We present the numerical evidence of the nonlinear motions of the cable by solving initial value problems and obtaining the motions after a long time. There appeared to be various types of nonlinear oscillations over a wide range of frequencies and amplitudes for the periodic forcing term.

Effects of hull form parameters on seakeeping for YTU gulet series with cruiser stern

  • Cakici, Ferdi;Aydin, Muhsin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.700-714
    • /
    • 2014
  • This study aims to identify the relations between seakeeping characteristics and hull form parameters for YTU Gulet series with cruiser stern. Seakeeping analyses are carried out by means of a computer software which is based on the strip theory and statistical short term response prediction method. Multiple regression analysis is used for numerical assessment through a computer software. RMS heave-pitch motions and absolute vertical accelerations on passenger saloon for Sea State 3 at head waves are investigated for this purpose. It is well known that while ship weight and the ratios of main dimensions are the primary factors on ship motions, other hull form parameters ($C_P$, $C_{WP}$, $C_{VP}$, etc.) are the secondary factors. In this study, to have an idea of geometric properties on ship motions of gulets three different regression models are developed. The obtained outcomes provide practical predictions of seakeeping behavior of gulets with a high level of accuracy that would be useful during the concept design stage.

Vibration Suppression Control of Two Cooperating Flexible Manipulators (양팔 협조 유연 매니퓰레이터의 진동억제 제어)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • For free motions, vibration suppression of single flexible manipulators has been one of the hottest research topics. However, for cooperative motions of multiple flexible manipulators, a little effort has been devoted for the vibration suppression control. So, the aim of this paper is to develop a hybrid force/position control and vibration suppression control scheme for multiple cooperation flexible manipulators handling a rigid object. In order to clarify the discussion, the motions of dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with hybrid position/force control scheme. Finally, Experiments are performed, and a comparison of experimental results is given to clarify the validity of our control scheme.

Earthquake Response Analysis of Long-Span Bridges with Multiple Input Motions (다중 지진파 입력을 고려한 장대교량의 지진응답해석)

  • 최준혁;최준성;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.376-383
    • /
    • 2003
  • For more rational and economical seismic design of long span bridges, it is essential to include in the analysis the effects of multiple input motions and structural or soil nonlinearity which are not considered in the current design practice. In this paper, the effects of these factors on the seismic behavior of long span bridges are studied. First, for the effect of multiple input motions, we take into account the differences in arrival times of seismic waves. To consider nonlinear soil properties we utilize SHAKE which is based on the equivalent linearization method. As a numerical example, a cable-stayed bridge is modelled using the analytical procedures described above. It is shown from the results that the these factors influence the seismic response of the bridge significantly and should never be neglected in design.

  • PDF

Floor Response Spectra Analysis Including Correlations of Multiple Support Motions (층간의 상관관계를 고려한 다중 층응답스펙트럼 해석)

  • 윤정방;현창헌;공재식;윤재석
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.67-72
    • /
    • 1993
  • This paper deals with the response spectra analysis method of the secondary structures including the correlation effect between the nonuniform multiple support excitations. Based on the random vibration theory, the multiple floor response spectra and the cross-correlation coefficient spectra of the floor motions are derived from the design ground response spectra. The example analysis results show that the proposed method yields more accurate results than those by the conventional multiple floor response spectra method without the correlation effects of the support motions. The present method may be easily employed in the seismic design of the secondary structures in engineering practice.

  • PDF

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.