• Title/Summary/Keyword: multiple level set

Search Result 298, Processing Time 0.026 seconds

The Impact of Market Environments on Optimal Channel Strategy Involving an Internet Channel: A Game Theoretic Approach (시장 환경이 인터넷 경로를 포함한 다중 경로 관리에 미치는 영향에 관한 연구: 게임 이론적 접근방법)

  • Yoo, Weon-Sang
    • Journal of Distribution Research
    • /
    • v.16 no.2
    • /
    • pp.119-138
    • /
    • 2011
  • Internet commerce has been growing at a rapid pace for the last decade. Many firms try to reach wider consumer markets by adding the Internet channel to the existing traditional channels. Despite the various benefits of the Internet channel, a significant number of firms failed in managing the new type of channel. Previous studies could not cleary explain these conflicting results associated with the Internet channel. One of the major reasons is most of the previous studies conducted analyses under a specific market condition and claimed that as the impact of Internet channel introduction. Therefore, their results are strongly influenced by the specific market settings. However, firms face various market conditions in the real worlddensity and disutility of using the Internet. The purpose of this study is to investigate the impact of various market environments on a firm's optimal channel strategy by employing a flexible game theory model. We capture various market conditions with consumer density and disutility of using the Internet.

    shows the channel structures analyzed in this study. Before the Internet channel is introduced, a monopoly manufacturer sells its products through an independent physical store. From this structure, the manufacturer could introduce its own Internet channel (MI). The independent physical store could also introduce its own Internet channel and coordinate it with the existing physical store (RI). An independent Internet retailer such as Amazon could enter this market (II). In this case, two types of independent retailers compete with each other. In this model, consumers are uniformly distributed on the two dimensional space. Consumer heterogeneity is captured by a consumer's geographical location (ci) and his disutility of using the Internet channel (${\delta}_{N_i}$).
    shows various market conditions captured by the two consumer heterogeneities.
    (a) illustrates a market with symmetric consumer distributions. The model captures explicitly the asymmetric distributions of consumer disutility in a market as well. In a market like that is represented in
    (c), the average consumer disutility of using an Internet store is relatively smaller than that of using a physical store. For example, this case represents the market in which 1) the product is suitable for Internet transactions (e.g., books) or 2) the level of E-Commerce readiness is high such as in Denmark or Finland. On the other hand, the average consumer disutility when using an Internet store is relatively greater than that of using a physical store in a market like (b). Countries like Ukraine and Bulgaria, or the market for "experience goods" such as shoes, could be examples of this market condition. summarizes the various scenarios of consumer distributions analyzed in this study. The range for disutility of using the Internet (${\delta}_{N_i}$) is held constant, while the range of consumer distribution (${\chi}_i$) varies from -25 to 25, from -50 to 50, from -100 to 100, from -150 to 150, and from -200 to 200.
    summarizes the analysis results. As the average travel cost in a market decreases while the average disutility of Internet use remains the same, average retail price, total quantity sold, physical store profit, monopoly manufacturer profit, and thus, total channel profit increase. On the other hand, the quantity sold through the Internet and the profit of the Internet store decrease with a decreasing average travel cost relative to the average disutility of Internet use. We find that a channel that has an advantage over the other kind of channel serves a larger portion of the market. In a market with a high average travel cost, in which the Internet store has a relative advantage over the physical store, for example, the Internet store becomes a mass-retailer serving a larger portion of the market. This result implies that the Internet becomes a more significant distribution channel in those markets characterized by greater geographical dispersion of buyers, or as consumers become more proficient in Internet usage. The results indicate that the degree of price discrimination also varies depending on the distribution of consumer disutility in a market. The manufacturer in a market in which the average travel cost is higher than the average disutility of using the Internet has a stronger incentive for price discrimination than the manufacturer in a market where the average travel cost is relatively lower. We also find that the manufacturer has a stronger incentive to maintain a high price level when the average travel cost in a market is relatively low. Additionally, the retail competition effect due to Internet channel introduction strengthens as average travel cost in a market decreases. This result indicates that a manufacturer's channel power relative to that of the independent physical retailer becomes stronger with a decreasing average travel cost. This implication is counter-intuitive, because it is widely believed that the negative impact of Internet channel introduction on a competing physical retailer is more significant in a market like Russia, where consumers are more geographically dispersed, than in a market like Hong Kong, that has a condensed geographic distribution of consumers.
    illustrates how this happens. When mangers consider the overall impact of the Internet channel, however, they should consider not only channel power, but also sales volume. When both are considered, the introduction of the Internet channel is revealed as more harmful to a physical retailer in Russia than one in Hong Kong, because the sales volume decrease for a physical store due to Internet channel competition is much greater in Russia than in Hong Kong. The results show that manufacturer is always better off with any type of Internet store introduction. The independent physical store benefits from opening its own Internet store when the average travel cost is higher relative to the disutility of using the Internet. Under an opposite market condition, however, the independent physical retailer could be worse off when it opens its own Internet outlet and coordinates both outlets (RI). This is because the low average travel cost significantly reduces the channel power of the independent physical retailer, further aggravating the already weak channel power caused by myopic inter-channel price coordination. The results implies that channel members and policy makers should explicitly consider the factors determining the relative distributions of both kinds of consumer disutility, when they make a channel decision involving an Internet channel. These factors include the suitability of a product for Internet shopping, the level of E-Commerce readiness of a market, and the degree of geographic dispersion of consumers in a market. Despite the academic contributions and managerial implications, this study is limited in the following ways. First, a series of numerical analyses were conducted to derive equilibrium solutions due to the complex forms of demand functions. In the process, we set up V=100, ${\lambda}$=1, and ${\beta}$=0.01. Future research may change this parameter value set to check the generalizability of this study. Second, the five different scenarios for market conditions were analyzed. Future research could try different sets of parameter ranges. Finally, the model setting allows only one monopoly manufacturer in the market. Accommodating competing multiple manufacturers (brands) would generate more realistic results.

  • PDF
  • Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

    • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.4
      • /
      • pp.111-136
      • /
      • 2018
    • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.

    An Empirical Study on the Determinants of Supply Chain Management Systems Success from Vendor's Perspective (참여자관점에서 공급사슬관리 시스템의 성공에 영향을 미치는 요인에 관한 실증연구)

    • Kang, Sung-Bae;Moon, Tae-Soo;Chung, Yoon
      • Asia pacific journal of information systems
      • /
      • v.20 no.3
      • /
      • pp.139-166
      • /
      • 2010
    • The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.

    A Study on the Risk Factors for Maternal and Child Health Care Program with Emphasis on Developing the Risk Score System (모자건강관리를 위한 위험요인별 감별평점분류기준 개발에 관한 연구)

    • 이광옥
      • Journal of Korean Academy of Nursing
      • /
      • v.13 no.1
      • /
      • pp.7-21
      • /
      • 1983
    • For the flexible and rational distribution of limited existing health resources based on measurements of individual risk, the socalled Risk Approach is being proposed by the World Health Organization as a managerial tool in maternal and child health care program. This approach, in principle, puts us under the necessity of developing a technique by which we will be able to measure the degree of risk or to discriminate the future outcomes of pregnancy on the basis of prior information obtainable at prenatal care delivery settings. Numerous recent studies have focussed on the identification of relevant risk factors as the Prior infer mation and on defining the adverse outcomes of pregnancy to be dicriminated, and also have tried on how to develope scoring system of risk factors for the quantitative assessment of the factors as the determinant of pregnancy outcomes. Once the scoring system is established the technique of classifying the patients into with normal and with adverse outcomes will be easily de veloped. The scoring system should be developed to meet the following four basic requirements. 1) Easy to construct 2) Easy to use 3) To be theoretically sound 4) To be valid In searching for a feasible methodology which will meet these requirements, the author has attempted to apply the“Likelihood Method”, one of the well known principles in statistical analysis, to develop such scoring system according to the process as follows. Step 1. Classify the patients into four groups: Group $A_1$: With adverse outcomes on fetal (neonatal) side only. Group $A_2$: With adverse outcomes on maternal side only. Group $A_3$: With adverse outcome on both maternal and fetal (neonatal) sides. Group B: With normal outcomes. Step 2. Construct the marginal tabulation on the distribution of risk factors for each group. Step 3. For the calculation of risk score, take logarithmic transformation of relative proport-ions of the distribution and round them off to integers. Step 4. Test the validity of the score chart. h total of 2, 282 maternity records registered during the period of January 1, 1982-December 31, 1982 at Ewha Womans University Hospital were used for this study and the“Questionnaire for Maternity Record for Prenatal and Intrapartum High Risk Screening”developed by the Korean Institute for Population and Health was used to rearrange the information on the records into an easy analytic form. The findings of the study are summarized as follows. 1) The risk score chart constructed on the basis of“Likelihood Method”ispresented in Table 4 in the main text. 2) From the analysis of the risk score chart it was observed that a total of 24 risk factors could be identified as having significant predicting power for the discrimination of pregnancy outcomes into four groups as defined above. They are: (1) age (2) marital status (3) age at first pregnancy (4) medical insurance (5) number of pregnancies (6) history of Cesarean sections (7). number of living child (8) history of premature infants (9) history of over weighted new born (10) history of congenital anomalies (11) history of multiple pregnancies (12) history of abnormal presentation (13) history of obstetric abnormalities (14) past illness (15) hemoglobin level (16) blood pressure (17) heart status (18) general appearance (19) edema status (20) result of abdominal examination (21) cervix status (22) pelvis status (23) chief complaints (24) Reasons for examination 3) The validity of the score chart turned out to be as follows: a) Sensitivity: Group $A_1$: 0.75 Group $A_2$: 0.78 Group $A_3$: 0.92 All combined : 0.85 b) Specificity : 0.68 4) The diagnosabilities of the“score chart”for a set of hypothetical prevalence of adverse outcomes were calculated as follows (the sensitivity“for all combined”was used). Hypothetidal Prevalence : 5% 10% 20% 30% 40% 50% 60% Diagnosability : 12% 23% 40% 53% 64% 75% 80%.

    • PDF

    Using the METHONTOLOGY Approach to a Graduation Screen Ontology Development: An Experiential Investigation of the METHONTOLOGY Framework

    • Park, Jin-Soo;Sung, Ki-Moon;Moon, Se-Won
      • Asia pacific journal of information systems
      • /
      • v.20 no.2
      • /
      • pp.125-155
      • /
      • 2010
    • Ontologies have been adopted in various business and scientific communities as a key component of the Semantic Web. Despite the increasing importance of ontologies, ontology developers still perceive construction tasks as a challenge. A clearly defined and well-structured methodology can reduce the time required to develop an ontology and increase the probability of success of a project. However, no reliable knowledge-engineering methodology for ontology development currently exists; every methodology has been tailored toward the development of a particular ontology. In this study, we developed a Graduation Screen Ontology (GSO). The graduation screen domain was chosen for the several reasons. First, the graduation screen process is a complicated task requiring a complex reasoning process. Second, GSO may be reused for other universities because the graduation screen process is similar for most universities. Finally, GSO can be built within a given period because the size of the selected domain is reasonable. No standard ontology development methodology exists; thus, one of the existing ontology development methodologies had to be chosen. The most important considerations for selecting the ontology development methodology of GSO included whether it can be applied to a new domain; whether it covers a broader set of development tasks; and whether it gives sufficient explanation of each development task. We evaluated various ontology development methodologies based on the evaluation framework proposed by G$\acute{o}$mez-P$\acute{e}$rez et al. We concluded that METHONTOLOGY was the most applicable to the building of GSO for this study. METHONTOLOGY was derived from the experience of developing Chemical Ontology at the Polytechnic University of Madrid by Fern$\acute{a}$ndez-L$\acute{o}$pez et al. and is regarded as the most mature ontology development methodology. METHONTOLOGY describes a very detailed approach for building an ontology under a centralized development environment at the conceptual level. This methodology consists of three broad processes, with each process containing specific sub-processes: management (scheduling, control, and quality assurance); development (specification, conceptualization, formalization, implementation, and maintenance); and support process (knowledge acquisition, evaluation, documentation, configuration management, and integration). An ontology development language and ontology development tool for GSO construction also had to be selected. We adopted OWL-DL as the ontology development language. OWL was selected because of its computational quality of consistency in checking and classification, which is crucial in developing coherent and useful ontological models for very complex domains. In addition, Protege-OWL was chosen for an ontology development tool because it is supported by METHONTOLOGY and is widely used because of its platform-independent characteristics. Based on the GSO development experience of the researchers, some issues relating to the METHONTOLOGY, OWL-DL, and Prot$\acute{e}$g$\acute{e}$-OWL were identified. We focused on presenting drawbacks of METHONTOLOGY and discussing how each weakness could be addressed. First, METHONTOLOGY insists that domain experts who do not have ontology construction experience can easily build ontologies. However, it is still difficult for these domain experts to develop a sophisticated ontology, especially if they have insufficient background knowledge related to the ontology. Second, METHONTOLOGY does not include a development stage called the "feasibility study." This pre-development stage helps developers ensure not only that a planned ontology is necessary and sufficiently valuable to begin an ontology building project, but also to determine whether the project will be successful. Third, METHONTOLOGY excludes an explanation on the use and integration of existing ontologies. If an additional stage for considering reuse is introduced, developers might share benefits of reuse. Fourth, METHONTOLOGY fails to address the importance of collaboration. This methodology needs to explain the allocation of specific tasks to different developer groups, and how to combine these tasks once specific given jobs are completed. Fifth, METHONTOLOGY fails to suggest the methods and techniques applied in the conceptualization stage sufficiently. Introducing methods of concept extraction from multiple informal sources or methods of identifying relations may enhance the quality of ontologies. Sixth, METHONTOLOGY does not provide an evaluation process to confirm whether WebODE perfectly transforms a conceptual ontology into a formal ontology. It also does not guarantee whether the outcomes of the conceptualization stage are completely reflected in the implementation stage. Seventh, METHONTOLOGY needs to add criteria for user evaluation of the actual use of the constructed ontology under user environments. Eighth, although METHONTOLOGY allows continual knowledge acquisition while working on the ontology development process, consistent updates can be difficult for developers. Ninth, METHONTOLOGY demands that developers complete various documents during the conceptualization stage; thus, it can be considered a heavy methodology. Adopting an agile methodology will result in reinforcing active communication among developers and reducing the burden of documentation completion. Finally, this study concludes with contributions and practical implications. No previous research has addressed issues related to METHONTOLOGY from empirical experiences; this study is an initial attempt. In addition, several lessons learned from the development experience are discussed. This study also affords some insights for ontology methodology researchers who want to design a more advanced ontology development methodology.

    Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

    • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
      • Science of Emotion and Sensibility
      • /
      • v.13 no.1
      • /
      • pp.47-60
      • /
      • 2010
    • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

    • PDF

    Factors Affecting Physicians who will be Vaccinated Every Year after Receiving the COVID-19 Vaccine in Healthcare Workers (의료종사자의 COVID-19 예방 백신 접종받은 후 향후 매년 예방접종 의향에 미치는 요인)

    • Hyeun-Woo Choi;Sung-Hwa Park;Eun-Kyung Cho;Chang-hyun Han;Jong-Min Lee
      • Journal of the Korean Society of Radiology
      • /
      • v.17 no.2
      • /
      • pp.257-265
      • /
      • 2023
    • The purpose of this study was to vaccinate every year according to the general characteristics of COVID-19, whether to vaccinate every year according to the vaccination experience, whether to vaccinate every year according to knowledge/attitude about vaccination, and negative responses to the vaccinate every year In order to understand the factors affecting the vaccination physician every year by identifying the factors of Statistical analysis is based on general characteristics, variables based on vaccination experience, and knowledge/attitudes related to vaccination. The doctor calculates the frequency and percentage, A square test (-test) was performed, and if the chi-square test was significant but the expected frequency was less than 5 for 25% or more, a ratio difference test was performed with Fisher's exact test. Through multiple logistic regression analysis using variables that were significant in simple analysis, a predictive model for future vaccination and the effect size of each independent variable were estimated. As statistical analysis software, SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used, and because the sample size was not large, the significance level was set at 10%, and when the p-value was less than 0.10, it was interpreted as statistically significant. In the simple logistic regression analysis, the reason why they answered that they would not be vaccinated every year was that they answered 'to prevent infection of family and hospital guests' rather than 'to prevent my infection' as the reason for the vaccination. It was 11.0 times higher and 3.67 times higher in the case of 'for the formation of collective immunity of the local community and the country'. The adverse reactions experienced after the 1st and 2nd vaccination were 8.42 times higher in those who did not experience pain at the injection site than those who did not, 4.00 times higher in those who experienced swelling or redness, and 5.69 times higher in those who experienced joint pain. There was a 5.57 times higher rate of absenteeism annually than those who did not. In addition, the more anxious they felt about vaccination, the more likely they were to not get the vaccine every year by 2.94 times.

    Analysis on Factors Influencing Welfare Spending of Local Authority : Implementing the Detailed Data Extracted from the Social Security Information System (지방자치단체 자체 복지사업 지출 영향요인 분석 : 사회보장정보시스템을 통한 접근)

    • Kim, Kyoung-June;Ham, Young-Jin;Lee, Ki-Dong
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.2
      • /
      • pp.141-156
      • /
      • 2013
    • Researchers in welfare services of local government in Korea have rather been on isolated issues as disables, childcare, aging phenomenon, etc. (Kang, 2004; Jung et al., 2009). Lately, local officials, yet, realize that they need more comprehensive welfare services for all residents, not just for above-mentioned focused groups. Still cases dealt with focused group approach have been a main research stream due to various reason(Jung et al., 2009; Lee, 2009; Jang, 2011). Social Security Information System is an information system that comprehensively manages 292 welfare benefits provided by 17 ministries and 40 thousand welfare services provided by 230 local authorities in Korea. The purpose of the system is to improve efficiency of social welfare delivery process. The study of local government expenditure has been on the rise over the last few decades after the restarting the local autonomy, but these studies have limitations on data collection. Measurement of a local government's welfare efforts(spending) has been primarily on expenditures or budget for an individual, set aside for welfare. This practice of using monetary value for an individual as a "proxy value" for welfare effort(spending) is based on the assumption that expenditure is directly linked to welfare efforts(Lee et al., 2007). This expenditure/budget approach commonly uses total welfare amount or percentage figure as dependent variables (Wildavsky, 1985; Lee et al., 2007; Kang, 2000). However, current practice of using actual amount being used or percentage figure as a dependent variable may have some limitation; since budget or expenditure is greatly influenced by the total budget of a local government, relying on such monetary value may create inflate or deflate the true "welfare effort" (Jang, 2012). In addition, government budget usually contain a large amount of administrative cost, i.e., salary, for local officials, which is highly unrelated to the actual welfare expenditure (Jang, 2011). This paper used local government welfare service data from the detailed data sets linked to the Social Security Information System. The purpose of this paper is to analyze the factors that affect social welfare spending of 230 local authorities in 2012. The paper applied multiple regression based model to analyze the pooled financial data from the system. Based on the regression analysis, the following factors affecting self-funded welfare spending were identified. In our research model, we use the welfare budget/total budget(%) of a local government as a true measurement for a local government's welfare effort(spending). Doing so, we exclude central government subsidies or support being used for local welfare service. It is because central government welfare support does not truly reflect the welfare efforts(spending) of a local. The dependent variable of this paper is the volume of the welfare spending and the independent variables of the model are comprised of three categories, in terms of socio-demographic perspectives, the local economy and the financial capacity of local government. This paper categorized local authorities into 3 groups, districts, and cities and suburb areas. The model used a dummy variable as the control variable (local political factor). This paper demonstrated that the volume of the welfare spending for the welfare services is commonly influenced by the ratio of welfare budget to total local budget, the population of infants, self-reliance ratio and the level of unemployment factor. Interestingly, the influential factors are different by the size of local government. Analysis of determinants of local government self-welfare spending, we found a significant effect of local Gov. Finance characteristic in degree of the local government's financial independence, financial independence rate, rate of social welfare budget, and regional economic in opening-to-application ratio, and sociology of population in rate of infants. The result means that local authorities should have differentiated welfare strategies according to their conditions and circumstances. There is a meaning that this paper has successfully proven the significant factors influencing welfare spending of local government in Korea.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.