• Title/Summary/Keyword: multiple input and multiple output(MIMO) system

Search Result 390, Processing Time 0.036 seconds

The Interference Nulling using Weighted Precoding in the MIMO Cognitive Radio System (다중 안테나를 사용하는 인지무선 시스템에서 가중치 precoder를 통한 간섭 제거 기법)

  • Lee, Seon-yeong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.768-776
    • /
    • 2010
  • In this paper, we consider a linear precoding for the effective spectrum sharing in multiple-input multiple-output (MIMO) cognitive radio system where a secondary user coexists with primary users. The secondary user employs the orthogonal space time block coding (OSTBC) at the transmitter. Assuming a flat fading channel and a maximum-likelihood receiver, the optimum precoder forces transmission referred to as eigen-beamforming. In this paper, to eliminate the interference, ZF criterion based eigen-beamforming is not only used but also the precoding weight is chosen to cancel the remaining interference. This weight is computed by vector's likelihood. Simulation results show stronger interference suppression capability, better SER performance, and higher capacity than the algorithm in [4].

An Efficient Constellation Rearrangement for HARQ with 64QAM (64QAM 변조 방식의 HARQ 전송을 위한 효율적인 성상 재배열 방법)

  • Park, Won-Seok;Cho, Chung-Ki;Kim, Jong-Hwan;Kim, Sang-Hyo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.14-21
    • /
    • 2011
  • In this paper, we propose an efficient symbol mapping method based on LLR (log-likelihood ratio) statistic for HARQ employing CoRe (constellation rearrangement) with 64QAM. The signal constellations for 64QAM with limited number of retransmissions are selected by the proposed mapping rule. Then we determine the transmission order of selected constellations. The proposed scheme reduces the performance deviation between transmit symbols so as to improve the system performance. Through simulation results, the proposed and existing CoRe mapping methods are compared with respect to error rate and throughput in MIMO-OFDM system over fading channel and we confirm the applicability of the proposed scheme in practical wireless communications environment.

Performance Analysis of MIMO-OFDM System over Nakagami Fading Channel (나카가미 페이딩 채널하에서 MIMO-OFDM 시스템의 성능분석)

  • Kang, Kyung-Sik;Kim, Won-Sub;Park, Chun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1797-1804
    • /
    • 2011
  • In this paper, I analyzed array organization of MIMO channel antenna and effect of operation environment by evaluating average BER from linear Space-Time Block Code orthogonal design and suggests designing condition of MT antenna for improved BER and the fading index m. To analyze system performance, I used M-PSK and M-QAM modulation, and to use analysis equations I used integrated by Nakagami fading variable, non-integrated Nakagami fading variable. We can get the organization of channel array by using mathematical calculation on matrix. STBE BER performance will decrease as AOA spreading decrease and such loss can be compensated from extending antenna spacing, and changing array organization.

Multi-Antenna based AOA Positioning using Phase Difference (다중 안테나 기반 위상 차이를 이용한 AOA 측위 기법)

  • Park, Ik-Hyun;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • In this paper, we have studied the performance of the AOA (Angle of Arrival) in multi-antenna systems for LBS (Location Based Services) and we also analyzed the performance of the AOA in SISO (Single Input Single Output) in multipath environments and their differences. The adequacy of AOA positioning in new communication environments was determined. Currently used positioning methods in 3G communication environment has been developed based on SISO. However, the accuracy of SISO-based TOA (Time of Arrival), TDOA (Time Difference of Arrival), AOA positioning techniques degraded in multipath environments. The communication system will be changed and developed. According to enhanced positioning techniques are required. Using antenna characteristics and the phase difference between antennas of LTE-Advanced standard's key technique MIMO system AOA positioning, and SISO based AOA positioning performance were analyzed. We found that AOA technique potential for use based on Multiple antenna systems by computer simulations.

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

Spectral Efficiency Evaluation of Coordinated Multi-point Systems Based on System Level Simulations (멀티 포인트 시스템에서 시스템 레벨 시뮬레이션에 기반을 둔 스펙트럼 효율성 검증)

  • Jung, Bang-Chul;Shin, Won-Yong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2113-2120
    • /
    • 2011
  • In this paper, so as to improve spectral efficiency for cell-boundary users, we introduce a coordinated multi-point (CoMP) system, which is one of inter-cell cooperative transmission strategies studied in 3GPP long-term evolution-advanced (LTE-A) systems, and develop a system-level simulator to evaluate performance. To identify performance improvement of the system with inter-cell cooperative transmission, we select a 3GPP LTE system as a reference, which shows the highest performance among the existing mobile communication systems, and conduct a performance comparison. System-level simulation is performed based on widely-used OPNET tool. We implement modules including central unit (CU), CoMP eNodeB (CeNB), user equipment (UE), and multiple-input multiple-output (MIMO) channel model, while designing the inter-cell cooperative transmission system. Under WINNER wireless channel model and international telecommunication union (ITU) network model environments, we then evaluate the performance of edge users who belong to the lower 5% in terms of spectral efficiency. It is finally shown that throughput of the proposed CoMP system gets improved up to 2.5 times compared to that of the 3GPP LTE reference system.

Analysis of Spatial Modulation MIMO Reception Performance for UHDTV Broadcasting (UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.837-847
    • /
    • 2015
  • In this paper, the reception performance of spatial modulation multiple-output multiple-input (MIMO) is analyzed for high speed terrestrial broadcasting. The MIMO scheme is required to reduce the inter symbol interference (ISI) and spatial correlation. The spatial modulation scheme solves the problem of ISI, but the spatial correlation degrades the reception performance of SM scheme. The space-time block coded spatial modulation (STBC-SM) is combined the SM system with space-time block code (STBC) for reducing the effects of the spatial correlation. However, the STBC-SM scheme degrades the spectral efficiency by transmitting same data in the two symbol period. The double space-time transmit diversity with spatial modulation (DSTTD-SM) scheme transmits the data with full antenna combination. To adapt these SM MIMO systems into the terrestrial broadcasting system, the reception performance is analyzed using computer simulation in SUI channel environments.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.

Collision Performance Improvement in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 이용한 직교 부호 도약 다중화 시스템의 성능향상)

  • Jung, Bang-Chul;Lee, Woo-Jae;Park, Yeoun-Sik;Jeon, Seong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2100-2112
    • /
    • 2011
  • An orthogonal code hopping multiplexing (OCHM) technique has been proposed for accommodating a large number of users with low channel activities than the number of orthogonal codewords through statistical multiplexing in downlink cellular systems. In this paper, a multiple input multiple output (MIMO) antenna based OCHM system is proposed to improve the performance. Each modulated symbol is repeated N times and the N repeated symbols are transmitted simultaneously using N transmit antennas. Through repetitions, the effect of perforations that the OCHM system experiences is decentralized among the repeated symbols and the full perforation probability is significantly reduced. Each receiver detect the transmitted signal using its pre-assigned code hopping pattern. Simulation results show that the proposed scheme saves the required energy for a given frame error rate (FER).

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF