• 제목/요약/키워드: multiple genome sequences

검색결과 64건 처리시간 0.027초

A Fosmid Cloning Strategy for Detecting the Widest Possible Spectrum of Microbes from the International Space Station Drinking Water System

  • Choi, Sangdun;Chang, Mi Sook;Stuecker, Tara;Chung, Christine;Newcombe, David A.;Venkateswaran, Kasthuri
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.249-255
    • /
    • 2012
  • In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular- weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing.

A TILLING Rice Population Induced by Gamma-ray Irradiation and its Genetic Diversity

  • Cho, Hyun Yong;Park, Seo Jung;Kim, Dong Sub;Jang, Cheol Seong
    • 한국육종학회지
    • /
    • 제42권4호
    • /
    • pp.365-373
    • /
    • 2010
  • TILLING (Targeting Induced Local Lesions IN Genomes) is broadly regarded as an excellent methodology for reverse genetics applications. Approximately 15,000 $M_3$ TILLING lines have been developed via the application of gamma-ray irradiation to rice seeds (cv. Donganbyeo), followed by subsequent selections. In an effort to evaluate the genetic diversity of the TILLING population, we have employed the AFLP multiple dominant marker technique. A total of 96 (0.64%) TILLING lines as well as Donganbyeo were selected randomly and their genetic diversity was assessed based on AFLP marker polymorphisms using 5 primer combinations. An average of 100.4 loci in a range of 97 to 106 was detected using these primer combinations, yielding a total of 158 (31.4%) polymorphic loci between Donganbyeo and each of the 96 lines. A broad range of similarity from 80% to 96% with an average of 89.4% between Donganbyeo and each of the 96 lines was also observed, reflecting the genetic diversity of the TILLING population. Approximately 28 polymorphic loci have been cloned and their sequences were BLAST-searched against rice whole genome sequences, resulting in 20 matches to each of the gene bodies including exon, intron, 1 kb upstream and 1 kb downstream regions. Six polymorphic loci evidenced changes in the coding regions of genes as compared to the rice pseudomolecules, 4 loci of which exhibited missense mutations and 2 loci of which exhibited silent mutations. Therefore, the results of our study show that the TILLING rice population should prove to be a useful genetic material pool for functional genomics as well as mutation breeding applications.

마약성과 비마약성 대마 품종의 식별을 위한 카나비놀 생합성 유전자 분석법 (Cannabinol Synthase Gene Based Molecular Markers for Identification of Drug and Fiber Type Cannabis sativa)

  • 박현승;오혜현;김성민;박지영;김진태;심현아;양태진
    • 생약학회지
    • /
    • 제52권2호
    • /
    • pp.69-76
    • /
    • 2021
  • Cannabis sativa is an important industrial plant utilized to produce fiber, oil, and medicinal ingredients. A chemotype of cannabis is divided into "Drug type" with predominance of tetrahydrocannabinolic acid (THCA) and "Fiber type" with cannabidiolic acid (CBDA). To develop molecular markers for the discrimination of these two types, nucleotide sequences of THCA synthase and CBDA synthase as well as their pseudogenes were retrieved from the recently published cannabis genome in chromosome scale. Gene-specific SNPs were discovered by multiple alignment of these sequences, and 2 dominant marker sets from each gene were designed for selective amplification. Our markers successfully identified "Drug type" and "Fiber type" cannabis plants as well as forensic samples including processed materials. Our molecular markers will provide a fast and efficient system for molecular-based identification of the cannabis plant.

Molecular Parameters for Assessing Marine Biotoxicity: Gene Expressions of Rockfish (Sebastes schlegeli) Exposed to Polycyclic Aromatic Hydrocarbons

  • Woo, Seon-Ock;Yum, Seung-Shic;Park, Hong-Seog;Jung, Jee-Hyun;Lee, Suk-Chan;Kim, So-Jung;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.267-272
    • /
    • 2007
  • Environmental and anthropogenic changes affect the health and stability of marine ecosystem. In this study we aimed to identify molecular biomarkers for ecotoxicological pollutants risk assessment in the rockfish (Sebastes schlegeli). We designed primers based on conserved sequences by multiple alignments of target genes from related species, and cloned the partial cDNAs of cytochrome P450 (CYP1A1), glutathione S-transferase (GST), metallothionein (MT), superoxide dismutase (SOD), ubiquitin (UB), vitellogenin (VTG) and $\beta$-actin by reverse transcription polymerase chain reaction (RT-PCR) from S. schlegeli. Northern blot results indicated that these six genes expressions were significantly induced by benzo[a]pyrene (BaP, 1 ${\mu}M$) and that the level of each of their transcripts increased in BaP-exposed rockfish in a time-dependent manner. This study suggests that transcriptional changes in these six genes may be used for monitoring environmental exposure to polycyclic aromatic hydrocarbons (PAHs).

Web Services Based Biological Data Analysis Tool

  • Kim, Min Kyung;Choi, Yo Hahn;Yoo, Seong Joon;Park, Hyun Seok
    • Genomics & Informatics
    • /
    • 제2권3호
    • /
    • pp.142-146
    • /
    • 2004
  • Biological data and analysis tools are accumulated in distributed databases and web servers. For this reason, biologists who want to find information from the web should be aware of the various kinds of resources where it is located and how it is retrieved. Integrating the data from heterogeneous biological resources will enable biologists to discover new knowledge across the specific domain boundaries from sequences to expression, structure, and pathway. And inevitably biological databases contain noisy data. Therefore, consensus among databases will confirm the reliability of its contents. We have developed WeSAT that integrates distributed and heterogeneous biological databases and analysis tools, providing through Web Services protocols. In WeSAT, biologists are retrieved specific entries in SWISS-PROT/EMBL, PDB, and KEGG, which have annotated information about sequence, structure, and pathway. And further analysis is carried by integrated services for example homology search and multiple alignments. WeSAT makes it possible to retrieve real time updated data and analysis from the scattered databases in a single platform through Web Services.

Molecular Structure and Organization of Crustacean Hyperglycemic Hormone Genes of Penaeus monodon

  • Wiwegweaw, Amporn;Udomkit, Apinunt;Panyim, Sakol
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.177-184
    • /
    • 2004
  • The Crustacean hyperglycemic hormone (CHH) has been shown to exist as multiple molecular forms in several crustacean species. In Penaeus monodon, a gene encoding CHH (so-called Pem-CHH1) was recently described. In this study, the molecular structures of two other CHH genes (Pem-CHH2 and Pem-CHH3) are reported. Both the Pem-CHH2 and Pem-CHH3 genes contain three exons that are separated by two introns that are similar to the structure of other genes in the same family. An analysis of the upstream nucleotide sequences of each Pem-CHH gene has identified the putative promoter element (TATA box) and putative binding sites for several transcription factors. The binding sites for CREB, Pit-1, and AP-1 were found upstream of all three Pem-CHH genes. A Southern blot analysis showed that at least one copy of each Pem-CHH gene was located within the same 10 kb genomic DNA fragment. These results suggest that the CHH genes are arranged in a cluster in the genome of P. monodon, and that their expression may be modulated by similar mechanisms.

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao;Choi, Jaeyoung;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.373-382
    • /
    • 2020
  • Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.

A Novel Integrative Expression Vector for Sulfolobus Species

  • Choi, Kyoung-Hwa;Hwang, Sungmin;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1503-1509
    • /
    • 2014
  • With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 ($pyrE_{sso}$) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an ${\alpha}$-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an ${\alpha}$-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase ($gdhA_{saci}$) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The ${\alpha}$-glucosidase activity was confirmed by the hydrolysis of $pNP{\alpha}G$. The pINEX vector should be applicable in delineating gene functions in this organism.

Whole Genome Sequence of a Korean Isolate (strain 51) of Helicobacter pylori

  • Lee Woo Kon;Cho Myung Je;Baik Seung Chul;Song Jae Young;Park Jeong Uck;Kang Hyung Lyun;Youn Hee Shang;Ko Gyung Hyuck;Rhee Kwang Ho
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.180-182
    • /
    • 2002
  • Substantial genomic diversity has been expected among clinical isolates of H. pylori. We have suggested that the two complete H. pylori genomes already sequenced may be insufficient for providing a discriminatory tool for typing clinical isolates as well as an insight into the genomic diversity, which enable to establish strategy for control of H. pylori infection. In this study, we determine the nucleotide sequence of the entire genome of Korean strain 51 and compare it with two reported genomic sequences to suggest validity for extensive genomic sequencing of H. pylori. The genome of H. pylori 51 consists of a circular chromosome with a size of 1,591,297 bp, which is corresponding to $95.4\%\;and\;96.8\%$ of the 26695 and J99 chromosome length, respectively. We predict that there are 1,454 open reading frames (ORFs) in 51, representing $91.4\%\;and\;97.2\%$ of the reported numbers of ORF of 26695 and J99, respectively. In contrast to 26695 and J99 that have 123 and 65 strain-specific genes, respectively, of the 1,454 genes, only 39 genes are unique to 51. Differences in genomic organization between 51 and each foreign strain were greater than between 2 foreign strains in pair wise entire sequence alignments by BLASTN. Particularly, the extent of genomic rearrangement observed between 51 and 26695 is higher than between 51 and J99. Multiple sequence alignment of orthologous genes among 3 strains showed that 51 is genetically closer to 26695 rather than J99. Phylogenetic analysis of nonsynonymous and synonymous mutation indicated J99 has the longest branch length in the unrooted phylogenetic tree, suggesting that J99 has higher mutation rate than the other 2 strains.

  • PDF

Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2

  • Kim, Woo Ryung;Park, Eun Gyung;Kang, Kyung-Won;Lee, Sang-Myeong;Kim, Bumseok;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.953-963
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5℃, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.