• Title/Summary/Keyword: multiple genes

Search Result 585, Processing Time 0.04 seconds

Multifactor Dimensionality Reduction(MDR) Analysis by Dummy Variables (더미(dummy) 변수를 활용한 다중인자 차원 축소(MDR) 방법)

  • Lee, Jea-Young;Lee, Ho-Guen
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.435-442
    • /
    • 2009
  • Multiple genes interacting is a difficult due to the limitations of parametric statistical method like as logistic regression for detection of gene effects that are dependent solely on interactions with other genes and with environmental exposures. Multifactor dimensionality reduction(MDR) statistical method by dummy variables was applied to identify interaction effects of single nucleotide polymorphisms(SNPs) responsible for longissimus mulcle dorsi area(LMA), carcass cold weight(CWT) and average daily gain(ADG) in a Hanwoo beef cattle population.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Acyl-Homoserine lactone Quorum Sensing in Bactreria

  • Greenberg, E.Peter
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.117-121
    • /
    • 2000
  • Recent advances in studies of bacterial gene expression and light microscopy show that cell-to cell communication and communication and community behavior are the rule rather than the exception. One type of cell-cell communication, quorum sensing in Gram-negative bacteria involves acyl-homoserine lactone signals. This type of quorum sension represents a dedicated communication system that enables a given species to sense when it has reached a critical population density. and to respond by activating expression of specific genes. The LuxR and LuxI proteins of Vibrio fisheri are the founding members of the acyl-homoserine lactone quorum sensing signal receptor and signal generator families of proteins. Acyl-homeserine lactone signaling in Pseudomonas aeruginosa is one model for the relationship between quorum sensing community behavior, and virulence. In the P. aeruginosa model. quorum sensing is required for normal biofilm maturation and virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes in P. aeruginosa.

  • PDF

Recent Advancement of the Molecular Diagnosis in Pediatric Brain Tumor

  • Bae, Jeong-Mo;Won, Jae-Kyung;Park, Sung-Hye
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.376-385
    • /
    • 2018
  • Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of prognosis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed.

Challenges for QTL Analysis in Crops

  • Long, Yan;Zhang, Chunyu;Meng, Jinling
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Quantitative trait loci, a genetic concept for explaining the inheritance of non-Mendelian traits in 1940s, have been realized as particular fragments of chromosome even unique genes in most crops in 21st century. However, only very a small portion of QTL has been screened out by geneticists comparing to a great number of genes underneath the quantitative traits. These identified QTL even have been seldom used into breeding program because crop breeders may not find the QTL in their breeding populations in their field station. Several key points will be proposed to meet the challenges of QTL analysis today: a fine mapping population and the related reference genetic map, QTL evaluation in multiple environments, recognizing real QTL with small genetic effect, map integration.

  • PDF

Molecular Genetics of Anxiety Disorder (불안장애의 분자유전학적 이해)

  • Kim, Jung-Jin
    • Anxiety and mood
    • /
    • v.3 no.1
    • /
    • pp.3-7
    • /
    • 2007
  • Anxiety disorder is likely caused by an interaction of multiple loci in brain, rather than a single locus. Hyperactive neurotransmitter circuits between the cortex, thalamus, amygdala, and hypothalamus are responsible for production of anxiety symptoms. Familial studies performed on anxiety disorder suggested that anxiety disorder should be caused by genetic etiology. Numerous linkage and association studies showed different genetic loci of anxiety disorder. Candidate genes have been focused on important neurotransmitters, neuropeptide, or genes affecting neuronal growth, development, protection or apoptosis. Anxiety disorder has various symptoms and comorbid diseases in family or proband. Therefore, further studies focused on symptomatic dimension of anxiety disorder or responses to drugs are required.

  • PDF

Physiological Races of Phytophthora infestans in Korea

  • Zhang, Xuan-Zhe;Kim, Byung-Sup
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • A total of the 261 Phytophthora infestans isolates collected from 2003 to 2005 in Korea were investigated for their physiological race composition. Among the isolates, we detected 18 physiological races and the dominant races were R0.1.3.5.6.10.11 and R0.1.3.5.6.7.10.11 with frequencies of 18.4% and 11.4%, respectively. All of the P. infestans races carried multiple virulence genes and showed virulence to the potato resistance genes R1, R3, R5, R6, R7, R10 and R11, but not to R8 and R9. Therefore, it is likely that the physiological races of P. infestans were diverse in Korea.

Genomic approaches for the understanding of aging in model organisms

  • Park, Sang-Kyu
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.291-297
    • /
    • 2011
  • Aging is one of the most complicated biological processes in all species. A number of different model organisms from yeast to monkeys have been studied to understand the aging process. Until recently, many different age-related genes and age-regulating cellular pathways, such as insulin/IGF-1-like signal, mitochondrial dysfunction, Sir2 pathway, have been identified through classical genetic studies. Parallel to genetic approaches, genome-wide approaches have provided valuable insights for the understanding of molecular mechanisms occurring during aging. Gene expression profiling analysis can measure the transcriptional alteration of multiple genes in a genome simultaneously and is widely used to elucidate the mechanisms of complex biological pathways. Here, current global gene expression profiling studies on normal aging and age-related genetic/environmental interventions in widely-used model organisms are briefly reviewed.

Analysis of Mating System in Lentinula edodes and Development of Mating Type-Specific Markers

  • Ha, Byung-Suk;Kim, Sinil;Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.42-42
    • /
    • 2014
  • Mating of tetrapolar mushrooms is regulated by to chromosomal loci, A and B. A locus contains A gene that expresses a homeodomain protein whereas B locus contains multiple pheromones and receptor genes. In order to characterize the mating loci in Korean cultivated strains of Lentinula edodes, one hundred monokaryotic myclelia were isolated from the basidiospores of cultivated strains, including Cham-A-Ram, Sanjo701, and Sanjo707. Both mating loci were amplified using primer sets targeting conserved sequence regions for homeodomain (HD), pheromone, and receptor genes. Subsequent sequence analysis revealed that the Korean strains contained significant variations in the homeodomain of A locus, even within the same A1 or A2 mating type. Similarly, B locus was also highly diversified in the sequences of pheromones and receptors as well as gene organization. These results enabled us to design mating type-specific probes which can distinguish mating type of each strain. The specificity was confirmed by between intra- and inter-strain mating experiment.

  • PDF

Hybrid Fungal Genome Annotation Pipeline Combining ab initio, Evidence-, and Homology-based gene model evaluation

  • Min, Byoungnam;Choi, In-Geol
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.22-22
    • /
    • 2018
  • Fungal genome sequencing and assembly have been trivial in these days. Genome analysis relies on high quality of gene prediction and annotation. Automatic fungal genome annotation pipeline is essential for handling genomic sequence data accumulated exponentially. However, building an automatic annotation procedure for fungal genomes is not an easy task. FunGAP (Fungal Genome Annotation Pipeline) is developed for precise and accurate prediction of gene models from any fungal genome assembly. To make high-quality gene models, this pipeline employs multiple gene prediction programs encompassing ab initio, evidence-, and homology-based evaluation. FunGAP aims to evaluate all predicted genes by filtering gene models. To make a successful filtering guide for removal of false-positive genes, we used a scoring function that seeks for a consensus by estimating each gene model based on homology to the known proteins or domains. FunGAP is freely available for non-commercial users at the GitHub site (https://github.com/CompSynBioLab-KoreaUniv/FunGAP).

  • PDF