• Title/Summary/Keyword: multiple detection

Search Result 2,061, Processing Time 0.023 seconds

Simple Online Multiple Human Tracking based on LK Feature Tracker and Detection for Embedded Surveillance

  • Vu, Quang Dao;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.893-910
    • /
    • 2017
  • In this paper, we propose a simple online multiple object (human) tracking method, LKDeep (Lucas-Kanade feature and Detection based Simple Online Multiple Object Tracker), which can run in fast online enough on CPU core only with acceptable tracking performance for embedded surveillance purpose. The proposed LKDeep is a pragmatic hybrid approach which tracks multiple objects (humans) mainly based on LK features but is compensated by detection on periodic times or on necessity times. Compared to other state-of-the-art multiple object tracking methods based on 'Tracking-By-Detection (TBD)' approach, the proposed LKDeep is faster since it does not have to detect object on every frame and it utilizes simple association rule, but it shows a good object tracking performance. Through experiments in comparison with other multiple object tracking (MOT) methods using the public DPM detector among online state-of-the-art MOT methods reported in MOT challenge [1], it is shown that the proposed simple online MOT method, LKDeep runs faster but with good tracking performance for surveillance purpose. It is further observed through single object tracking (SOT) visual tracker benchmark experiment [2] that LKDeep with an optimized deep learning detector can run in online fast with comparable tracking performance to other state-of-the-art SOT methods.

Prior Maximum Likelihood Detection Verifier Design in MIMO Receivers (MIMO 수신기에서 사전 Maximum Likelihood 검파 검증기 설계)

  • Jeon, Hyoung-Goo;Bae, Jin-Ho;Lee, Dong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper proposes a prior maximum likelihood (ML) detection verifier which has an ability to verify if the zero forcing (ZF) detection results are identical to the ML detection results. Since more than 90% of ZF detection results are identical to ML detection results, the proposed verifier makes it possible to omit the computationally complex ML detection in 90% cases of MIMO signal detections. The proposed verifier is designed by using the diversity gain obtained from converting MIMO signal into single input multiple output (SIMO) signals. In the proposed method, single input multiple output (SIMO) signals for each transmit antenna are separated from MIMO signals after the MIMO signals are detected by ZF method. Computer simulations show that the true alarm probability of the proposed verifier is more than 80% and the false alarm probability is less than $10^{-4}$.

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

A new noncoherent detection algorithm for DBO-CSS (새로운 DBO-CSS 수신기 구조)

  • Yoon, Sang-Hun;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.59-64
    • /
    • 2007
  • In this paper, we propose a new decoding method for differentially biorthogonal chirp spread spectrum (DBO-CSS). In DBO-CSS, the information is carried on the differential phase not between the adjacent sub-chirp symbols but between the sub-chirp symbols in the same position of adjacent full-chirp symbol. So, the conventional multiple symbol differential detection (MSDD) algorithms to enhance the BER performance can not be applied to the DBO-CSS directly. In this paper, we propose a new differential detection algorithm based on a partial MSD(multiple symbol detection) and a viterbi algorithm. It is shown that the performance gain of the proposed algorithm when compared with that of the conventional detection algorithm is around 2.5dB at BER = 10-5.

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Track-Before-Detect Algorithm for Multiple Target Detection (다수 표적 탐지를 위한 Track-Before-Detect 알고리듬 연구)

  • Won, Dae-Yeon;Shim, Sang-Wook;Kim, Keum-Seong;Tahk, Min-Jea;Seong, Kie-Jeong;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.848-857
    • /
    • 2011
  • Vision-based collision avoidance system for air traffic management requires a excellent multiple target detection algorithm under low signal-to-noise ratio (SNR) levels. The track-before-detect (TBD) approaches have significant applications such as detection of small and dim targets from an image sequence. In this paper, two detection algorithms with the TBD approaches are proposed to satisfy the multiple target detection requirements. The first algorithm, based on a dynamic programming approach, is designed to classify multiple targets by using a k-means clustering algorithm. In the second approach, a hidden Markov model (HMM) is slightly modified for detecting multiple targets sequentially. Both of the proposed approaches are used in numerical simulations with variations in target appearance properties to provide satisfactory performance as multiple target detection methods.

A Study of Automatic Multi-Target Detection and Tracking Algorithm using Highest Probability Data Association in a Cluttered Environment (클러터가 존재하는 환경에서의 HPDA를 이용한 다중 표적 자동 탐지 및 추적 알고리듬 연구)

  • Kim, Da-Soul;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1826-1835
    • /
    • 2007
  • In this paper, we present a new approach for automatic detection and tracking for multiple targets. We combine a highest probability data association(HPDA) algorithm for target detection with a particle filter for multiple target tracking. The proposed approach evaluates the probabilities of one-to-one assignments of measurement-to-track and the measurement with the highest probability is selected to be target- originated, and the measurement is used for probabilistic weight update of particle filtering. The performance of the proposed algorithm for target tracking in clutter is compared with the existing clustering algorithm and the sequential monte carlo method for probability hypothesis density(SMC PHD) algorithm for multi-target detection and tracking. Computer simulation studies demonstrate that the HPDA algorithm is robust in performing automatic detection and tracking for multiple targets even though the environment is hostile in terms of high clutter density and low target detection probability.

Performance of Energy Detection Spectrum Sensing with Delay Diversity for Cognitive Radio System

  • Kim, Eun-Cheol;Koo, Sung-Wan;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2009
  • In this paper, a new spectrum sensing method based on energy detection is proposed and analyzed in a cognitive radio(CR) system. We employ a delay diversity receiver for sensing the primary user's spectrum with reasonable cost and complexity. Conventional CR with the receiver equipping multiple antennas requires additional hardware and space for installing multiple antennas in accordance with increase in the number of antennas. If the number of antennas increases, detection probability as well as hardware complexity and cost rise. Then, it is difficult to make a primary user detector practically. Therefore, we adopt a delay diversity receiver for solving problems of the conventional spectrum detector utilizing multiple antennas. We derive analytical expressions for the spectrum sensing performance of the proposed system. From the simulation results, it is demonstrated that the primary user detector with the delay diversity receiver has almost half the complexity and shows similar or improved performance as compared with that employing multiple antennas. Therefore, the proposed spectrum sensing structure can be a practical solution for enhancing the detection capacity in CR system operations. The results of this paper can be applied to legacy CR systems with simple modifications.

Detecting Multiple Outliers Using the Gaps of Order Statistics

  • Kim, Hyun Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.184-197
    • /
    • 1995
  • An objective and one-step detection procedure of multiple outliers is suggested by using the gaps of the order statistics. The detection procedure can be used as a routine outlier detection method of a statistical analysis computer program. The procedure is applied to some examples including the data selected by Kitagawa.

  • PDF