• Title/Summary/Keyword: multiple classifiers

Search Result 99, Processing Time 0.025 seconds

Neural-network based Computerized Emotion Analysis using Multiple Biological Signals (다중 생체신호를 이용한 신경망 기반 전산화 감정해석)

  • Lee, Jee-Eun;Kim, Byeong-Nam;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Emotion affects many parts of human life such as learning ability, behavior and judgment. It is important to understand human nature. Emotion can only be inferred from facial expressions or gestures, what it actually is. In particular, emotion is difficult to classify not only because individuals feel differently about emotion but also because visually induced emotion does not sustain during whole testing period. To solve the problem, we acquired bio-signals and extracted features from those signals, which offer objective information about emotion stimulus. The emotion pattern classifier was composed of unsupervised learning algorithm with hidden nodes and feature vectors. Restricted Boltzmann machine (RBM) based on probability estimation was used in the unsupervised learning and maps emotion features to transformed dimensions. The emotion was characterized by non-linear classifiers with hidden nodes of a multi layer neural network, named deep belief network (DBN). The accuracy of DBN (about 94 %) was better than that of back-propagation neural network (about 40 %). The DBN showed good performance as the emotion pattern classifier.

Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier (복합 특징과 결합 인식기에 의한 필기체 숫자인식)

  • 박중조;송영기;김경민
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Off-line handwritten numeral recognition is a very difficult task and hard to achieve high recognition results using a single feature and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose handwritten numeral recognition system using hybrid features and combined classifier. To improve recognition rate, we select mutually helpful features -directional features, crossing point feature and mesh features- and make throe new hybrid feature sets by using these features. These hybrid feature sets hold the local and global characteristics of input numeral images. And we implement combined classifier by combining three neural network classifiers to achieve high recognition rate, where fuzzy integral is used for multiple network fusion. In order to verify the performance of the proposed recognition system, experiments with the unconstrained handwritten numeral database of Concordia University, Canada were performed. As a result, our method has produced 97.85% of the recognition rate.

  • PDF

Context Dependent Fusion with Support Vector Machines (Support Vector Machine을 이용한 문맥 민감형 융합)

  • Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.37-45
    • /
    • 2013
  • Context dependent fusion (CDF) is a fusion algorithm that combines multiple outputs from different classifiers to achieve better performance. CDF tries to divide the problem context into several homogeneous sub-contexts and to fuse data locally with respect to each sub-context. CDF showed better performance than existing methods, however, it is sensitive to noise due to the large number of parameters optimized and the innate linearity limits the application of CDF. In this paper, a variant of CDF using support vector machines (SVMs) for fusion and kernel principal component analysis (K-PCA) for context extraction is proposed to solve the problems in CDF, named CDF-SVM. Kernel PCA can shape irregular clusters including elliptical ones through the non-linear kernel transformation and SVM can draw a non-linear decision boundary. Regularization terms is also included in the objective function of CDF-SVM to mitigate the noise sensitivity in CDF. CDF-SVM showed better performance than CDF and its variants, which is demonstrated through the experiments with a landmine data set.

A Performance Comparison of Multi-Label Classification Methods for Protein Subcellular Localization Prediction (단백질의 세포내 위치 예측을 위한 다중레이블 분류 방법의 성능 비교)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.992-999
    • /
    • 2014
  • This paper presents an extensive experimental comparison of a variety of multi-label learning methods for the accurate prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular locations. We compared several methods from three categories of multi-label classification algorithms: algorithm adaptation, problem transformation, and meta learning. Experimental results are analyzed using 12 multi-label evaluation measures to assess the behavior of the methods from a variety of view-points. We also use a new summarization measure to find the best performing method. Experimental results show that the best performing methods are power-set method pruning a infrequently occurring subsets of labels and classifier chains modeling relevant labels with an additional feature. futhermore, ensembles of many classifiers of these methods enhance the performance further. The recommendation from this study is that the correlation of subcellular locations is an effective clue for classification, this is because the subcellular locations of proteins performing certain biological function are not independent but correlated.

Generation of Pattern Classifier using LFSRs (LFSR을 이용한 패턴분류기의 생성)

  • Kwon, Sook-Hee;Cho, Sung-Jin;Choi, Un-Sook;Kim, Han-Doo;Kim, Na-Roung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.673-679
    • /
    • 2014
  • The important requirements of designing a pattern classifier are high throughput and low memory requirements, and low cost hardware implementation. A pattern classifier by using Multiple Attractor Cellular Automata(MACA) proposed by Maji et al. reduced the complexity of the classification algorithm from $O(n^3)$ to O(n) by using Dependency Vector(DV) and Dependency String(DS). In this paper, we generate a pattern classifier using LFSR to improve efficiently the space and time complexity and we propose a method for finding DV by using the 0-basic path. Also we investigate DV and the attractor of the generated pattern classifier. We can divide an n-bit DS by m number of $DV_i$ s and generate various pattern classifiers.

An Ensemble Method for Latent Interest Reasoning of Mobile Users (모바일 사용자의 잠재 관심 추론을 위한 앙상블 기법)

  • Choi, Yerim;Park, Jonghun;Shin, Dong Wan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.706-712
    • /
    • 2015
  • These days, much information is provided as a list of summaries through mobile services. In this regard, users consume information in which they are interested by observing the list and not by expressing their interest explicitly or implicitly through rating content or clicking links. Therefore, to appropriately model a user's interest, it is necessary to detect latent interest content. In this study, we propose a method for reasoning latent interest of a user by analyzing mobile content consumption logs of the user. Specifically, since erroneous reasoning will drastically degrade service quality, a unanimity ensemble method is adopted to maximize precision. In this method, an item is determined as the subject of latent interest only when multiple classifiers considering various aspects of the log unanimously agree. Accurate reasoning of latent interest will contribute to enhancing the quality of personalized services such as interest-based recommendation systems.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.

Wavelet based Fuzzy Integral System for 3D Face Recognition (퍼지적분을 이용한 웨이블릿 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak;Shim, Jae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.616-626
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial feature information and the face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple frequency domains for each depth image and depth fusion using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. It is used as the reference point to normalize for orientated facial pose and extract multiple areas by the depth threshold values. In the second step, we adopt as features for the authentication problem the wavelet coefficient extracted from some wavelet subband to use feature information. The third step of approach concerns the application of eigenface and Linear Discriminant Analysis (LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) show the highest recognition rate among the regions, and the depth fusion method achieves 98.6% recognition rate, incase of fuzzy integral.

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF