• Title/Summary/Keyword: multiple classification analysis

Search Result 471, Processing Time 0.03 seconds

Korean Voice Phishing Text Classification Performance Analysis Using Machine Learning Techniques (머신러닝 기법을 이용한 한국어 보이스피싱 텍스트 분류 성능 분석)

  • Boussougou, Milandu Keith Moussavou;Jin, Sangyoon;Chang, Daeho;Park, Dong-Joo
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.297-299
    • /
    • 2021
  • Text classification is one of the popular tasks in Natural Language Processing (NLP) used to classify text or document applications such as sentiment analysis and email filtering. Nowadays, state-of-the-art (SOTA) Machine Learning (ML) and Deep Learning (DL) algorithms are the core engine used to perform these classification tasks with high accuracy, and they show satisfying results. This paper conducts a benchmarking performance's analysis of multiple SOTA algorithms on the first known labeled Korean voice phishing dataset called KorCCVi. Experimental results reveal performed on a test set of 366 samples reveal which algorithm performs the best considering the training time and metrics such as accuracy and F1 score.

Detection and Classification of Demagnetization and Short-Circuited Turns in Permanent Magnet Synchronous Motors

  • Youn, Young-Woo;Hwang, Don-Ha;Song, Sung-ju;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1614-1622
    • /
    • 2018
  • The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.

Comparison of ICA-based and MUSIC-based Approaches Used for the Extraction of Source Time Series and Causality Analysis (뇌 신호원의 시계열 추출 및 인과성 분석에 있어서 ICA 기반 접근법과 MUSIC 기반 접근법의 성능 비교 및 문제점 진단)

  • Jung, Young-Jin;Kim, Do-Won;Lee, Jin-Young;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Recently, causality analysis of source time series extracted from EEG or MEG signals is becoming of great importance in human brain mapping studies and noninvasive diagnosis of various brain diseases. Two approaches have been widely used for the analyses: one is independent component analysis (ICA), and the other is multiple signal classification (MUSIC). To the best of our knowledge, however, any comparison studies to reveal the difference of the two approaches have not been reported. In the present study, we compared the performance of the two different techniques, ICA and MUSIC, especially focusing on how accurately they can estimate and separate various brain electrical signals such as linear, nonlinear, and chaotic signals without a priori knowledge. Results of the realistic simulation studies, adopting directed transfer function (DTF) and Granger causality (GC) as measures of the accurate extraction of source time series, demonstrated that the MUSIC-based approach is more reliable than the ICA-based approach.

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

Classification of Proximity Relational Using Multiple Fuzzy Alpha Cut(MFAC) (MFAC를 사용한 근접관계의 분류)

  • Ryu, Kyung-Hyun;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2008
  • Generally, real system that is the object of decision-making is very variable and sometimes it lies situations with uncertainty. To solve these problem, it has used statistical methods as significance level, certainty factor, sensitivity analysis and so on. In this paper, we propose a method for fuzzy decision-making based on MFAC(Multiple Fuzzy Alpha Cut) to improve the definiteness of classification results with similarity evaluation. In the proposed method, MFAC is used for extracting multiple a ${\alpha}$-level with proximity degree at proximity relation between relative Hamming distance and max-min method and for minimizing the number of data which are associated with the partition intervals extracted by MFAC. To determine final alternative of decision-making, we compute the weighted value between extracted data by MFAC From the experimental results, we can see the fact that the proposed method is simpler and more definite than classification performance of the conventional methods and determines an alternative efficiently for decision-maker by testing significance of sample data through statistical method.

VISIBLE/NEAR-IR REFLECTANCE SPECTROSCOPY FOR THE CLASSIFICATION OF POULTRY CARCASSES

  • Chen, Yud-Ren
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.403-412
    • /
    • 1993
  • This paper presents the progress of the development of a nondestructive technique for the classification of normal, septicemic , and cadaver poultry carcasses by the Instrumentation and Sensing Laboratory at Beltsville, Maryland, U.S.A. The Sensing technique is based on the diffuse reflectance spectroscopy of poultry carcasses.

  • PDF

High-Reliable Classification of Multiple Induction Motor Faults Using Vibration Signatures based on an EM Algorithm (EM 알고리즘 기반 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Jang, Won-Chul;Kang, Myeongsu;Choi, Byeong-Keun;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.346-353
    • /
    • 2013
  • Industrial processes need to be monitored in real-time based on the input-output data observed during their operation. Abnormalities in an induction motor should be detected early in order to avoid costly breakdowns. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results shows that the proposed approach yields higher classification accuracies than the state-of-the-art approach for both noiseless and noisy environments for identifying the induction motor faults.

  • PDF

Case Studies Regarding the Classification of Public Caves (공개동굴의 유형분류에 관한 사례연구)

  • Hong, Hyun-Chul
    • Journal of the Speleological Society of Korea
    • /
    • no.93
    • /
    • pp.13-25
    • /
    • 2009
  • This study, which includes case studies that provide information of cave tour resources, considered a variety of selected variables of the internal and external parts of caves with the expanded factors of the academic classification in caves. It uses the cluster analysis, one of the multivariate analysis techniques, and applied the results for review. As a result, public caves can present multiple classification criteria according to the factors of the surrounding area's human environment. The result, classified by the region in public caves, is derived from this study.

AN M/G/1 QUEUEING SYSTEM WITH MULTIPLE PRIORITY CLASSES

  • Han, Dong-Hwan
    • Journal of applied mathematics & informatics
    • /
    • v.1 no.1
    • /
    • pp.55-74
    • /
    • 1994
  • We consider an M/G/1 queueing system with multiple priority classes of jobs. Considered preemptive rules are the preemptive-resume preemptive-repeat-identical, and preemptive-repeat-different policies. These three preemptive rules will be analyzed in parallel. The key idea of analysis is based on the consideration of a busy period as composite of delay cycle. As results we present the exact Laplace-Stieltjecs(L.S) transforms of residence time and completion time in the system.