• Title/Summary/Keyword: multiple antenna systems

Search Result 310, Processing Time 0.025 seconds

Low Dimensional Multiuser Detection Exploiting Low User Activity

  • Lee, Junho;Lee, Seung-Hwan
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.283-291
    • /
    • 2013
  • In this paper, we propose new multiuser detectors (MUDs) based on compressed sensing approaches for the large-scale multiple antenna systems equipped with dozens of low-power antennas. We consider the scenarios where the number of receiver antennas is smaller than the total number of users, but the number of active users is relatively small. This prior information motivates sparsity-embracing MUDs such as sparsity-embracing linear/nonlinear MUDs where the detection of active users and their symbol detection are employed. In addition, sparsity-embracing MUDs with maximum a posteriori probability criterion (MAP-MUDs) are presented. They jointly detect active users and their symbols by exploiting the probability of user activity, and it can be solved efficiently by introducing convex relaxing senses. Furthermore, it is shown that sparsity-embracing MUDs exploiting common users' activity across multiple symbols, i.e., frame-by-frame, can be considered to improve performance. Also, in multiple multiple-input and multiple-output networks with aggressive frequency reuse, we propose the interference cancellation strategy for the proposed sparsity-embracing MUDs. That first cancels out the interference induced by adjacent networks and then recovers the desired users' information by exploiting the low user activity. In simulation studies for binary phase shift keying modulation, numerical evidences establish the effectiveness of our proposed MUDs exploiting low user activity, as compared with the conventional MUD.

DEVELOPMENT OF TRACKING SYSTEMS APPLICABLE TO SPACE LAUNCH VEHICLE

  • Kim Sung-Wan;Hwang Soo-Seul;Lee Jae-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.247-250
    • /
    • 2004
  • Tracking systems for launch vehicle consist mainly of radar transponder (beacon), RF switch or power divider, antennas as onboard system, and single or multiple radars as ground one. In this paper, tracking systems, which are applicable to KSLV (Korea Space Launch Vehicle)-l, are introduced and the electrical performances for developed prototypes are presented. We have also performed RF link analysis for both uplink and downlink, and estimated that the maximum distance to be able to track KSLV-l stably is dependent on uplink characteristic in our system.

  • PDF

Statistical Characteristic Analysis of the Spatial Channel Model for Performance Evaluation of MIMO Systems (MIMO 송수신 시스템 성능 평가를 위한 공간 채널 모델의 통계적 특성 분석)

  • Shin, Junsik;Suh, Junyeub;Kang, Hosik;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.748-757
    • /
    • 2015
  • MIMO systems utilizing multiple antenna transmission and reception is one of the key technologies to enhance the capacity of 5G wireless communications. In order to obtain an appropriate performance evaluation of MIMO techniques, the usage of wireless channel model reflecting spatial channel characteristics is required, such as the 3-dimensional spatial channel model(3D SCM) proposed by 3GPP TR36.873 documentation. In this paper, we implement and verify the channel simulation environment based on 3D SCM, to present and compare the characteristics of UMi and UMa environments. We also apply MIMO transmission to the UMa scenario to investigate the channel correlation among antenna elements with different array distances and to identify the corresponding throughput changes. By evaluating the channel power correlations for randomly distributed users within the sector for different horizontal and vertical antenna distances, we present the statistical characteristics which determine the transmission performance under the SCM environment.

Design of Sub-array Receiver for Active Phase Array Radar (능동위상배열 레이더 부배열 수신기 설계)

  • Yi, Hui-min;Kim, Do-hoon;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • Modern Radars are evolving into MFRs which can search multiple targets simultaneously and then track them. Additionally they should be able to avoid some external jamming signals. Applying to these MFRs, Antennas should be able to perform DBF including to not only real-time beam steering but also multi-beam forming simultaneously. And they can cancel the beam at the specific direction. In this paper, we describe the implementation of sub-array type antenna hardware which can be applying DBF. Also we propose the modified amplitude aperture distribution for suppressing the side lobe level and explain the sub-array receiver design with amplitude tapering. It consists in making the amplitude weighting in 2 steps. In order to compare two weighting cases, we investigate the G/T performance for the array antenna. At the conclusion, we make a comparative study for the dynamic range of every sub-array receiver and present the hardware implementation that is more advantageous for sub-array alignment and calibration in DBF.

An Adaptive Signal Transmission/Reception Scheme for Spectral Efficiency Improvement of Multiple Antenna Systems in Cellular Environments (셀룰러 환경에서 다중 안테나 시스템의 전송 효율 증대를 위한 적응적 송수신 방안)

  • Jin, Gwy-Un;Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.429-437
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) techniques can be used for the spectral efficiency enhancement of the cellular systems, which can be categorized into spatial multiplexing (SM) and spatial diversity schemes. MIMO systems suffer a severe performance degradation due to the intercell interference from the adjacent cells as the mobile terminal moves toward the cell boundary. Therefore for the spectral efficiency enhancement, an appropriate transmission scheme for the given channel environment and reception scheme which can mitigate the intercell interference are required. In this paper, we propose an adaptive signal transmission/reception scheme for the spectral efficiency improvement of $M_R{\times}M_T$ MIMO systems, present the decision criteria for the adaptive operation of the proposed scheme, and demonstrate the performance gain. The proposed scheme performs adaptive transmission using spatial multiplexing and spatial diversity, and adaptive reception using maximal ratio combining (MRC) and intercell spatial demultiplexing (ISD) when the spatial diversity transmission is used at the transmitter. Spatial multiplexing/demultiplexing is performed at the high signal-to-interference ratio (SIR) range, and the transmit diversity in conjunction with the adaptive reception uses either conventional MRC or ISD which can mitigate the $M_R-1$ interference signals, based on the mobile location. For the performance evaluation of the proposed adaptive scheme, the probability density function (pdf) of the effective SIR for the transmission/reception methods in consideration are derived for $M_R{\times}M_T$ MIMO systems. Using the results, the average effective SIR and spectral efficiency are presented and compared with simulation results.

Quasi-Orthogonal STBC based on Partial Feedback with Adaptive Power Allocation under Imperfect Channel Estimation (채널 추정 에러와 동적 파워 할당 기술이 적용된 MIMO 시스템)

  • Huh, Chang-Yeul;Lee, Dong-Hun;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.83-84
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) systems can achieve the increasing of performances by using an adaptive power allocation. The related previous work limited the transmit antenna number because orthogonal space-time block codes (OSTBCs) yield full transmit rate only for two transmit antennas. We extend a robust system under imperfect channel estimation for four transmission antennas with maintaining a full transmission rate.

  • PDF

Sum-Rate Improvement Method Using Quasi-Orthogonal Beam Pairs for UCA MIMO Transmission (UCA MIMO 전송 시 준직교적 빔 쌍을 활용한 합 전송률 향상 방안)

  • Yang, Jiyeong;Kim, Huiwon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2018
  • Massive multiple-input multiple-output (MIMO) transmission is an essential technique for achieving the high bandwidth efficiency required in 5G mobile communication systems. Various forms of arrays can be used as the number of antenna elements increases for massive MIMO transmission. In this letter, we propose a beamforming algorithm applicable to multiuser MIMO transmission using uniform circular arrays. By employing quasi-orthogonal beam pairs obtained from the inter-beam correlation information, we minimize inter-user interference and evaluate the resulting performance gain.

Inter-user Quasi-synchronous OFDMA for Cooperative Base Stations Systems (상향링크 협력기지국 시스템을 위한 사용자 간 준동기 OFDMA 기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.97-101
    • /
    • 2014
  • We propose a timing-offset resilient OFDMA with achieving full diversity for uplink cooparative base station (BS) systems. In uplink OFDMA, timing offset (TO) among multiple users destroys subcarrier orthogonality and thus, it degrades the performance. In order to avoid this performance degradation, the accurate processing, so called 'ranging', is required to synchronize. However, in cooparative BS systems, it is difficult to perform ranging scheme. This is because if the ranging scheme is performed for a specific BS, timing offset has to occur for other BSs. Thus, the conventional ranging method cannot achieve full diversity gain in cooperative BS systems. By employing TO resilient OFDMA, so called, 'ZCZ time-spread OFDMA'. we achieve full diversity gain even with TO among multiple users. We show that the proposed scheme achieves the same performance with case of no multiple acces interference.

A Downlink Spectral Efficiency Improvement Scheme Using Intercell Cooperative Spatial Multiplexing and Beamforming (셀 간 협조적 공간 다중화 및 빔포밍을 이용한 하향링크 전송 효율 증대 방안)

  • Chang, Jae-Won;Jin, Gwy-Un;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.45-52
    • /
    • 2008
  • In typical cellular systems using frequency reuse scheme, the terminal suffers a performance degradation due to the intercell interference signals from adjacent cells as the terminal moves toward the cell boundary. In this paper, a signal transmission and reception scheme which achieve spatial multiplexing and beamforming gain from a distributed MIMO (multiple-input multiple-output) channel using multiple-antenna terminal is proposed for the spectral efficiency enhancement in a multi-cell downlink environment, when geographically separated base stations cooperatively transmit signals. In particular, we analyze the effective signal-to-interference ratio and spectral efficiency of the proposed scheme for different frequency reuse patterns and for varying numbers of receive antennas, and compare with the performance of the MRC (maximal ratio combining) reception scheme in typical cellular systems. We evaluate the amount of transmission efficiency of the scheme by comparing the performance near the cell boundary where the strong intercell interference is experienced.

Link selection based on switching between full-duplex and half-duplex modes

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Multiple-input multiple-output systems can achieve a full sum rate (SR) via full duplex (FD). However, its performance is degraded by self-interference (SI) that occurs between the transmitter and receiver at the same node and thus is constrained by error floors. Conversely, half duplex (HD) can avoid the SI albeit at lower spectral efficiency, and the slope of its error curve is determined by the diversity order. In this study, a link selection scheme based on switching between FD and HD is examined as a simple method to improve the bit error rate (BER) performance of FD systems. In the proposed link selection algorithm, either FD or HD is selected based on the received minimum distance and signal-to-interference plus noise ratio. Simulation results indicate that the proposed hybrid FD/HD switching system offers significant BER performance improvement when compared with that of the conventional FD and FD based on only the received minimum distance under the same fixed SR. Under relatively sufficient SI cancellation, it is demonstrated to outperform the HD with a diversity advantage in low and medium signal-to-noise ratio region.