• Title/Summary/Keyword: multiple Hall array devices

Search Result 2, Processing Time 0.014 seconds

A New Measurement Method of a Radial Pulse Wave Using Multiple Hall Array Devices

  • Lee, Sang-Suk;An, Myoung-Chone;Ahn, Sung-Hoon
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.132-136
    • /
    • 2009
  • This study investigated the radial pulse waveform obtained by a medical pulsimeter sensor. A pulse-sensing part array consisting of multiple Hall devices was located over a skin-contacting part with a hard magnetic material. The periodic movement of the magnetic material of the skin-contacting part affected the magnetic field in the pulse-sensing part array and was detected by multiple Hall devices. The analysis of a radial pulse waveform that is measured noninvasively by detecting the changes of the magnetic field can be used to develop a new diagnostic algorithm of oriental medical apparatus.

Embodiment of Spatially Arterial Pulse Diagnostic Apparatus using Array Multiple Hall Devices

  • Lee, Sang-Suk;Kim, Gi-Wang;Ahn, Myung-Cheon;Park, Young-Seok;Choi, Jong-Gu;Choi, Sang-Dae;Park, Dal-Ho;Hwang, Do-Guwn;Yoon, Hyung-Rho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.721-726
    • /
    • 2007
  • The study relates to achievement and analysis of 3-dimensional spatial pulse wave archived by a spatially arterial pulse diagnostic apparatus (SAPDA), wherein a pulse sensing part array consists of multiple hall devices and is located over a skin contacting part which consists of a magnetic material. When a radially arterial pulse is transferred to the magnetic material, which is contacted skin that results in changes in a magnetic field of the lower part of the pulse sensing part array, the changes in a magnetic field can be detected by the commercial Hall semiconductor device of the pulse sensing part array. Finally, according to development of SAPDA, the 3-dimensionally arterial pulse waveform can be measured noninvasively by detecting the changes of the magnetic field.