• Title/Summary/Keyword: multiplanar reformation

Search Result 6, Processing Time 0.025 seconds

Multiplanar Reformation of CT Scan for Preoperative Staging of Gastric Cancer

  • Kim, Honsoul;Lim, Joon Seok
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.43-45
    • /
    • 2015
  • Recent progress on CT such as multi-detector row CT, oral contrast agents and multiplanar reconstruction have markedly improved the image quality as well as diagnostic performance of gastric cancer. Multiplanar reformatted images at predetermined orientations can be easily performed and embedded into routine CT protocol without increasing medical expense or labor. Currently, many institutions have adopted routine multiplanar reformatted protocols and therefore knowledge on them can improve the diagnostic accuracy of gastric cancer.

A management system for plural viewing coordinates of multiplanar reformation (의료영상 시스템의 다중 단면 재구성을 위한 좌표계 제어 시스템)

  • Kim, Jun-Ho;Kye, Hee-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.163-170
    • /
    • 2010
  • Multi-planar reformatting(MPR) is a volume rendering technique which generates images of sectional planes users define, so that it is essential for medical imaging system. Due to the recent advances of medical imaging system, users require to place plural planes on a single dataset and to enable an individual and easy control for each plane. In this paper, we enumerate various user operations for recent MPR and analyze user requirements to update the plane equation. For the effective control of coordinate system, each plane is considered in a separated coordinate system and all informations which form a coordinate system are grouped into two components: the individual components and the common components. The proposed system is implemented on a graphics hardware, so that it smoothly performs MPR including recent requirements.

The Clinical Usefulness of Spiral CT Angiography in the Diagnosis of Pulmonary Thromboembolism (폐색전증 진단에서 나선식 전산화 단층촬영 혈관조영술의 임상적 유용성)

  • Kim, Woo-Gyu;Lim, Byung-Sung;Kim, Mi-Young;Hwang, Hweung-Kon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.669-680
    • /
    • 1999
  • Background: Pulmonary thromboembolism(PTE) is a life threatening disease that needs early diagnosis. Spiral CT angiography depict thromboemboli in the central pulmonary vessels with greater than 90% sensitivity and specificity, which approaches the results of pulmonary angiography in the Prospective Investigation of Pulmonary Embolism Diagnosis(PIOPED) study. This study was performed to evaluate the findings and the diagnostic value(clinical utility) of the spiral CT angiography with 2D image(multiplanar reformation) and 3D images(Shaded surface display, Minimal intensity projection) in the pulmonary thromboembolism. Methods: We retrospectively analysed spiral CT angiography and pulmonary angiography, lung scan and clinical recordings of 20 patients who had PTE diagnosed by spiral CT angiography(n=19 cases) or pulmonary angiography(n=l case) from September 1997 to August 1998. Among 20 patients who had underwent spiral CT angiography, 14 patients could be performed lung perfusion scan at the same time. We analyzed the vascular and parenchymal change in spiral CT angiogram. Results: Anatomical distribution of PTE was as follows: 1) left lung(n= 103)

  • PDF

MDCT Angiography of the Subclavian Artery Thrombosis of the 3D Findings (쇄골하동맥 혈전증에서의 MDCT 혈관조영술의 3D 영상)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.813-819
    • /
    • 2018
  • To demonstrate the 3D usefulness of MDCT, a 73-year-old male patient with subclavian thrombosis was obtained 3D images of maximum intensity projection (MIP), volume rendering, and multiplanar reformation (MPR) to clearly detect and locate the subclavian artery. The data will be provided to the patient for diagnosis and treatment. The scan data were acquired as 3D CT images MIP, volume rendering, curved MPR, and virtual endoscopy images. In the 3D program, the ascending aorta was measured as 364.28 HU, the left carotid artery was 413.77 HU, and the left subclavian artery was 15.72 HU. MIP coronal image shows the closure of the subclavian artery in the left side. Three-dimensional volume images were obtained with 100% permeability and 87-1265 HU. The coronal curved MPR and sagittal curved MPR images show the closure of the subclavian artery due to thrombus using 3D image processing. In the case of subclavian arterial occlusion due to thrombosis, the patient is scanned with MDCT and 3D image processing can be used to confirm occlusion of subclavian artery.

Formulation of a reference coordinate system of three-dimensional (3D) head & neck images: Part I. Reproducibility of 3D cephalometric landmarks (3차원 두부영상의 기준좌표계 설정을 위한 연구: 1부 CT영상에서 3차원 계측점의 재현성)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.388-397
    • /
    • 2005
  • The purpose of this study was to redefine the cephalometric landmarks in three-dimensional (3D) images, which are used in orthodontic cephalometric radiography, and to evaluate the reproducibility of each landmark for 3D cephalometric analysis. Eighteen CT scans were taken at the Department of Diagnostic Radiology at Seoul National University Dental Hospital and manipulated with V works 4.0(Cybermed Inc., Seoul, Korea). The coordinate system was established using 7 reference points, with no more than 4 points on the same plane. These 7 points were generated as a volume model, the voxel size of which was 4 by 4 by 2 (threshold value=639). The cephalometric landmarks were selected at the multiplanar reformation (MPR) window on the volume mode of V works 4.0. The selected landmarks were exported to V surgery (Cybermed Inc., Seoul, Korea) for the calculation of coordinate values. All the data were taken twice with a lapse of 2 weeks by one investigator The reproducibility of each landmark was $0.17\~1.21mm$ in the x axis, $0.30\~1.53mm$. In the y axis, and $0.27\~1.81mm$ in the z axis. In all three axes, the range of error was similar. These error ranges were acceptable with regards to the pixel space and slice thickness. The most reproducible points were 1 points which were selected on the basis of the volume model. The least reproducible points were J points that were defined by sutures.

The Effect of the Axial Plane on Measurement of Available Bone Height for Dental Implant in Computed Tomography of the Mandible (하악의 전산화 단층사진에서 횡단면이 임플랜트를 위한 가용골 높이의 결정에 미치는 영향)

  • Jhin, Min-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.379-388
    • /
    • 2002
  • For the success of dental implant, accurate radiographic evaluation is prerequisite for planning the location of the osseointegrated implants and avoiding injury to vital structures. CT/MPR(computed tomography/multiplanar reformation) shows improved visualization of inferior alveolar canal. In order to obtain cross-sectional images parallel to the teeth, the occlusal plane is used to orientate for the axial plane. If the direction of axial plane is not parallel to the occlusal plane, the reformatted cross-sectional scans will be oblique to the planned fixture direction and will not show the actual dimension of the planned fixture's location. If the available bone height which measured in the cross-sectional view is much greater than the actual available bone height, penetration of canal may occur. The aim of this study is to assess the effect of the axial plane to measurement of available bone height for dental implant in computed tomography of the mandible. 40 patients who had made radiographic stents and had taken CT were selected. The sites that were included in the study were 45 molar regions. In the central panoramic scan, the length from alveolar crest to superior border of inferior alveolar canal(available bone height, ABH) was measured in direction of reformatted cross-sectional plane(uncorrected ABH). Then, length from alveolar crest to superior border of canal was measured in direction of stent(corrected ABH). The angle between uncorrected ABH and corrected ABH was measured. From each ABH, available fixture length was decided by $Br{{\aa}}nemark$ system. The results were following ; the difference between two ABHs was statistically significant in both first and second molar(p< 0.01). The percentage of difference more than 1 mm was 8.7% in first molar and 15.5% in second molar. The percentage of difference more than 2 mm was 2.0% in first molar and 6.6% in second molar. The maximum value of difference was 2.5 mm in first molar and 2.2 mm in second molar. The correlations between difference of 2 ABHs and angle was positive correlations in both first and second molar. The correlation coefficient was 0.534 in first molar and 0.728 in second molar. The second molar has a stronger positive correlation. The percentage of disagreement between 2 fixture lengths from two ABHs was 24.4% in first molar and 28.9% in second molar.