• Title/Summary/Keyword: multipath transmission

Search Result 270, Processing Time 0.022 seconds

A Study of Multipath Routing based on Software-Defined Networking for Data Center Networking in Cloud Computing Environments (클라우드 컴퓨팅 환경에서 데이터 센터 네트워킹을 위한 소프트웨어 정의 네트워킹 기반 다중 경로 라우팅 연구)

  • Kang, Yong-Hyeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.563-564
    • /
    • 2017
  • The core of the cloud computing technology is the data center in that the networking technology is important. Cloud data centers are comprised of tens or even hundreds of thousands of physical servers, so networking technology is required for high-speed data transfer. These networking technologies also require scalability, fault tolerance, and agility. For these requirements, many multi-path based schemes have been proposed. However, it was mainly used for load balancing of traffic and select a path randomly. In this paper, a scheme that can construct a multipath using software defined networking technology and transmit the traffic in parallel by using the multipath to achieve a fast transmission speed, solve the scalability problem and fault tolerance is proposed.

  • PDF

Prioritized Multipath Video Forwarding in WSN

  • Asad Zaidi, Syed Muhammad;Jung, Jieun;Song, Byunghun
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.176-192
    • /
    • 2014
  • The realization of Wireless Multimedia Sensor Networks (WMSNs) has been fostered by the availability of low cost and low power CMOS devices. However, the transmission of bulk video data requires adequate bandwidth, which cannot be promised by single path communication on an intrinsically low resourced sensor network. Moreover, the distortion or artifacts in the video data and the adherence to delay threshold adds to the challenge. In this paper, we propose a two stage Quality of Service (QoS) guaranteeing scheme called Prioritized Multipath WMSN (PMW) for transmitting H.264 encoded video. Multipath selection based on QoS metrics is done in the first stage, while the second stage further prioritizes the paths for sending H.264 encoded video frames on the best available path. PMW uses two composite metrics that are comprised of hop-count, path energy, BER, and end-to-end delay. A color-coded assisted network maintenance and failure recovery scheme has also been proposed using (a) smart greedy mode, (b) walking back mode, and (c) path switchover. Moreover, feedback controlled adaptive video encoding can smartly tune the encoding parameters based on the perceived video quality. Computer simulation using OPNET validates that the proposed scheme significantly outperforms the conventional approaches on human eye perception and delay.

A Study on Efficient ISI Cancellation in Wireless LAN System (무선 LAN 시스템에 적합한 효율적인 ISI 제거에 관한 연구)

  • 임세홍;이인섭;고영욱;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.236-239
    • /
    • 2000
  • OFDM Transmission system can effectively reduce ISI(Inter Symbol Interference) caused by multipath fading, especially in the case of broad band data transmission. Nevertheless, the delayed waves existing in a symbol degrade the transmission Performance at the receiver. Therefore when OFDM transmission system applies to mobile radio communication system, we have to remove the influence without intricacy. This paper proposes and design a new scheme in order to estimate propagation characteristics using the characteristics of distinctive OFDM signal which is inserted pilot signal periodically in frequency axis before IFFT at the transmitter Moreover, we introduce a cancellation scheme of delayed signal on the basis of the proposed estimation technique. Using these schemes, it is possible to estimate and cancel the Interference of the delayed signal before FFT at the receiver.

  • PDF

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

Mitigating the Impact of Mobility on H.264 Real-Time Video Streams Using Multiple Paths

  • Calafate, Carlos T.;Malumbres, Manuel P.;Manzoni, Pietro
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.387-396
    • /
    • 2004
  • One of the main problems associated with MANETs is that mobility and the associated route discovery and maintenance procedures of reactive routing protocols cause severe interruptions on real-time video streams. Some of these interruptions are too large to be concealed using any sort of video technology, resulting in communications breaks unpleasant for the final end user. We present a solution for enhanced video transmission that increases route stability by using an improved route discovery process based on the DSR routing protocol, along with traffic splitting algorithms and a preventive route discovery mechanism. We also present some video adaptative mechanisms that improve the overall performance of multipath routing in terms of video data replication and video packet splitting strategies. Combining our proposals, we achieve up to 97% less interruptions on communication with high mobility and over 1.2 dB of improvements in terms of video distortion.

Performance Evaluation for Multicasting Video over OpenFlow-based Small-scale Network

  • Thi, Thuyen Minh;Huynh, Thong;Kong, In-Yeup;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1084-1091
    • /
    • 2014
  • When demand for transmitting multimedia data increases, network congestion is more likely to occur and users will suffer high loss rate as well as high delay. In order to enhance quality-of-service (QoS) of video multicasting, we need to raise transmission reliability and reduce end-to-end delay. This paper proposes a routing mechanism for a OpenFlow-based small-scale network in order to multicast video reliably with low delay. In our method, multipath routing will be applied to Multiple Description (MD) Coded video to exploit its multi-description property. Through performance evaluation, our method shows improvement on loss rate, delay and video distortion.

Vector Channel Simulator Design for Underwater Acoustic-based Communications

  • Kim, Duk-Yung;Kim, Yong-Deak;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.18-24
    • /
    • 2002
  • This paper discusses the development of an acoustic vector channel simulator for the performance analysis of an acoustic digital communication system. The channel simulator consists of transmission module, acoustic channel model, receiver, beamformer, and adaptive equalizer. The source signal (QPSK) is generated by the specified parameters. The transmitted signal generates multipath signals which have a different delay, amplitude and doppler frequency. The paper presents in details the approach to the performance analysis of an acoustic digital communication system according to the antenna structure and the various baseband signal processing techniques.

Performance Analysis on Multipath Fading Channel Equalization in a Generalized Filter Bank Based OFDM System (일반화된 필터 뱅크를 적용한 OFDM 시스템에서의 다중 경로 폐이딩 채널 등화기 성능 분석)

  • 박태윤;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1841-1847
    • /
    • 2001
  • A novel decision-feedback equalization technique for a generalized filter bank based orthogonal frequency division multiplexing data transmission system operating in a frequency selective multipath fading channel is presented in this paper. At the cost of relatively increased computational complexity in comparison to the conventional OFDM systems, the proposed system achieves a better performance in trims 7f bit error rates. The simulation results confirm of superiority and robustness of our method, particularly, in the low SNR channel environments.

  • PDF

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

A Framework of Rate Control and Power Allocation in Multipath Lossy Wireless Networks

  • Radwan, Amr;Kim, Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1404-1414
    • /
    • 2016
  • Cross-layer design is a concept, which captures the dependencies and interactions and enables information sharing among layers in order to improve the network performance and security. There are two key challenges in wireless networks, lossy features of links and power assumption of network nodes. Cross-layer design of congestion control and power allocation in wireless lossy networks has been studied in the existing literature; however, there has been no contribution proposed in the literature that exploits the path diversity. In this paper, we are motivated to develop a cross-layer design of congestion control and power allocation, which takes into account lossy features of wireless links and transmission powers of network nodes and can be implemented in a distributed manner. Numerical simulation is conducted to illustrate the performance of our proposed algorithm and the comparison with current alternative approaches.