• Title/Summary/Keyword: multipath problem

Search Result 135, Processing Time 0.021 seconds

Multipath Interference Cancellation Algorithm in WCDMA forward link (WCDMA 순방향 링크에서의 다중 경로 간섭 제거 알고리즘)

  • 유현규;권종형;류탁기;홍대식;강창언
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.353-356
    • /
    • 2001
  • In WCDMA systems, it is difficult to use high level modulation schemes in Rayleigh fading channel. Components of Multipath interference give signals much inteferences. Multipath interference cancellation is one of the method to overcome this problem. In this paper, multistage PIC algorithm is used to verify a performance of multipath interference cancellation. It is algorithm gradually canceling the multipath interferences as a stage number is increases. In computer simulations, it is verified that multipath interference cancelation is necessary and using its algorithm give much better performances than not using.

  • PDF

Multiple Finger Expansion for Blind Interference Canceller in the Presence of Subchip-Spaced Multipath Components

  • Quek, Tony Q. S.;Suzuki, Hiroshi;Fukawa, Kazuhiko
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • A blind interference canceller in the presence of subchipspaced multipath channels for direct-sequence code division multiple access (DS-CDMA) down-link system is considered. This technique is based on combining the existing blind interference canceller with a technique that involves assigning subchip-tap spacing to the Rake receiver. The proposed receiver minimizes the receiver’s output energy subject to a constraint in order to mitigate the multiple access interference (MAI) along each multipath component, and then suboptimally combining all the multipath components. Moreover, it is able to mitigate the mismatch problem when subchip-spaced multipath components arrive at the blind interference canceller. It is known that optimal combining techniques perform a decorrelation operation before combining, which requires both knowledge and computational complexity. In the following, we have adopted a simpler but suboptimum approach in the combining of the suppressed signals at the output of our proposed receiver. Computer simulation results verify the effectiveness of the proposed receiver to handle subchip-spaced multipath components and still suppresses MAI significantly.

Disjointed Multipath using Energy Efficient Face Routing in Wireless Sensor Networks (무선 센서 망에서 에너지 효율적인 페이스 라우팅을 활용한 분리된 다중 경로 방안)

  • Cho, Hyunchong;Kim, Cheonyong;Kim, Sangdae;Oh, Seungmin;Kim, Sang-Ha
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.116-121
    • /
    • 2017
  • In wireless sensor networks, the multipath prefers energy efficient routing method due to the characteristic of low-power sensor which uses geographic method to transmit data packet through information of the neighbor nodes. However, when multipath meets the routing fail area called hole area, path overlap problem can occur, resulting in failed maintenance of disjoint multipath. To solve this problem, multipath research studies have been performed to exploit the modeling and detouring method in routing fail area by keeping the disjoint multipath. However, in an energy point of view, additional method like modeling can lead to a lot of energy consumption of sensor node. Moreover, lots of energy consumption of sensor node can shorten the life span of sensor network. In this study, we proposed an energy efficient geographic routing by keeping the disjoint multipath in routing fail area. The proposed scheme exploited the face routing using the geographic recovery method without additional method like modeling.

Learning Automata Based Multipath Multicasting in Cognitive Radio Networks

  • Ali, Asad;Qadir, Junaid;Baig, Adeel
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.406-418
    • /
    • 2015
  • Cognitive radio networks (CRNs) have emerged as a promising solution to the problem of spectrum under utilization and artificial radio spectrum scarcity. The paradigm of dynamic spectrum access allows a secondary network comprising of secondary users (SUs) to coexist with a primary network comprising of licensed primary users (PUs) subject to the condition that SUs do not cause any interference to the primary network. Since it is necessary for SUs to avoid any interference to the primary network, PU activity precludes attempts of SUs to access the licensed spectrum and forces frequent channel switching for SUs. This dynamic nature of CRNs, coupled with the possibility that an SU may not share a common channel with all its neighbors, makes the task of multicast routing especially challenging. In this work, we have proposed a novel multipath on-demand multicast routing protocol for CRNs. The approach of multipath routing, although commonly used in unicast routing, has not been explored for multicasting earlier. Motivated by the fact that CRNs have highly dynamic conditions, whose parameters are often unknown, the multicast routing problem is modeled in the reinforcement learning based framework of learning automata. Simulation results demonstrate that the approach of multipath multicasting is feasible, with our proposed protocol showing a superior performance to a baseline state-of-the-art CRN multicasting protocol.

Multipath Ghosts in Through-the-Wall Radar Imaging: Challenges and Solutions

  • Abdalla, Abdi T.;Alkhodary, Mohammad T.;Muqaibel, Ali H.
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.376-388
    • /
    • 2018
  • In through-the-wall radar imaging (TWRI), the presence of front and side walls causes multipath propagation, which creates fake targets called multipath ghosts. They populate the scene and reduce the probability of correct target detection, classification, and localization. In modern TWRI, specular multipath exploitation has received considerable attention for reducing the effects of multipath ghosts. However, this exploitation is challenged by the requirements of the reflecting geometry, which is not always available. Currently, the demand for a high radar image resolution dictates the use of a large aperture and wide bandwidth. This results in a large amount of data. To tackle this problem, compressive sensing (CS) is applied to TWRI. With CS, only a fraction of the data are used to produce a high-quality image, provided that the scene is sparse. However, owing to multipath ghosts, the scene sparsity is highly deteriorated; hence, the performance of the CS algorithms is compromised. This paper presents and discusses the adverse effects of multipath ghosts in TWRI. It describes the physical formation of ghosts, their challenges, and existing suppression techniques.

A Robust Disjoint Multipath Scheme based on Geographic Routing in Irregular Wireless Sensor Networks (불규칙적 무선센서네트워크에 강한 위치기반 다중경로 제공 방안)

  • Kim, Sung-Hwi;Park, Ho-Sung;Lee, Jeong-Cheol;Oh, Seung-Min;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.21-30
    • /
    • 2012
  • Sensor networks are composed of a great number of sensor nodes with constrained battery. Disjoint multipath scheme based flooding method has a merit that efficiently construct multipath in irregular networks, but causes lots of energy consumption in networks. Flooding method is not a suitable technology in wireless sensor networks with constrained battery. We introduce energy-efficient geographic routing scheme considered as an efficient, simple, and scalable routing protocol for wireless sensor networks. The geographic routing scheme on multipath generates a problem with a congestion. So we introduce the concept of multipath pipeline as a congestion avoidance strategy. But multipath pipelines have a big problem on the boundary of holes under irregular networks. We propose a novel disjoint multipath scheme as combined method with geographic routing scheme and hole detouring algorithm on multipath. A novel disjoint multipath scheme constructs disjoint multipath pipelines efficiently for reliability without a collision in irregular wireless sensor networks. Simulation results are provided to validate the claims.

An Unambiguous Multipath Error Mitigation Scheme for TMBOC and CBOC Signals (TMBOC과 CBOC 신호에 적합한 모호성이 낮은 다중경로 오차완화 기법)

  • Yoo, Seung-Soo;Jee, Gyu-In;Kim, Sun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.977-987
    • /
    • 2012
  • One of the most significant errors in the pseudo-range measurement performance of GNSSes (Global Navigation Satellite Systems) is their multipath error for high-precision applications. Several schemes to mitigate this error have been studied. Most of them, however, have been focused on the GPS (Global Positioning System) L1 C/A (Coarse/Acquisition) signal that was designed in the 1970s and is still being used for civil navigation. Recently, several modernized signals that were especially conceived to more significantly mitigate multipath errors have been introduced, such as Time Multiplexed and Composite Binary Offset Carrier (TMBOC and CBOC, respectively) signals. Despite this advantage, however, a problem remains with the use of TMBOC and CBOC modulations: the ambiguity of BOC (Binary Offset Carrier)-modulated signal tracking. In this paper, a novel unambiguous multipath error mitigation scheme for these modernized signals is proposed. The proposed scheme has the same complexity as HRCs (High Resolution Correlators) but with low ambiguity. The simulation results showed that the proposed scheme outperformed or performed at par with the HRC in terms of their multipath error envelopes and running averages in the static and statistical channel models. The ranging error derived by the mean multipath error of the proposed scheme was below 1.8 meters in an urban area in the statistical channel model.

Reducing the Flow Completion Time for Multipath TCP

  • Heo, GeonYeong;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3900-3916
    • /
    • 2019
  • The modern mobile devices are typically equipped with multiple network interfaces, e.g., 4G LTE, Wi-Fi, Bluetooth, but the current implementation of TCP can support only a single path at the same time. The Multipath TCP (MPTCP) leverages the multipath feature and provides (i) robust connection by utilizing another interface if the current connection is lost and (ii) higher throughput than single path TCP by simultaneously leveraging multiple network paths. However, if the performance between the multiple paths are significantly diverse, the receiver may have to wait for packets from the slower path, causing reordering and buffering problems. To solve this problem, previous MPTCP schedulers mainly focused on predicting the latency of the path beforehand. Recent studies, however, have shown that the path latency varies by a large margin over time, thus the MPTCP scheduler may wrongly predict the path latency, causing performance degradation. In this paper, we propose a new MPTCP scheduler called, choose fastest subflow (CFS) scheduler to solve this problem. Rather than predicting the path latency, CFS utilizes the characteristics of these paths to reduce the overall flow completion time by redundantly sending the last part of the flow to both paths. We compare the performance through real testbed experiments that implements CFS. The experimental results on both synthetic packet generation and actual Web page requests, show that CFS consistently outperforms the previous proposals in all cases.

Improving TCP Performance in Multipath Packet Forwarding Networks

  • Lee, Youngseok;Park, Ilkyu;Park, Yanghee
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.148-157
    • /
    • 2002
  • This paper investigates schemes to improve TCP performance in multipath forwarding networks. In multipath routing, packets to the same destination are sent to multiple next-hops in either packet-level or flow-level forwarding mode. Effective bandwidth is increased since we can utilize unused capacity of multiple paths to the destination. In packet-level multipath forwarding networks, TCP performance may not be enhanced due to frequent out-of-order segment arrivals at the receiver because of different delays among paths. To overcome this problem, we propose simple TCP modifications. At the sender, the fast retransmission threshold is adjusted taking the number of paths into consideration. At the receiver, the delayed acknowledgment scheme is modified such that an acknowledgment for an out-of-order segment arrival is delayed in the same way for the in-order one. The number of unnecessary retransmissions and congestion window reductions is diminished, which is verified by extensive simulations. In flow-level multipath forwarding networks, hashing is used at routers to select outgoing link of a packet. Here, we show by simulations that TCP performance is increased in proportion to the number of paths regardless of delay differences.

Adaptive Multipath Routing Algorithm for Low-power Lossy Networks (저전력 손실 네트워크에서의 적응형 다중경로 라우팅 알고리즘)

  • Kim, Seunghyun;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • For a wireless sensor network in general, efficient routing decision is important because wireless connections are not stable, sensitive to external interference, and topology changes dynamically. RPL standard of IETF is not flexible to various environmental changes and causes packet loss and delay due to topological imbalance. Sending packets through multipath can partially remedy this problem. The multipath routing, however, can introduce significant delay overhead by allocating unnecessary timeslots. This paper proposes an RPL using multipath adaptively according to network conditions. We show by simulations that the proposed algorithm is more efficient than the basic RPL and the multipath RPL.