• Title/Summary/Keyword: multimodal structures

Search Result 22, Processing Time 0.015 seconds

Tidal-Flat Sedimentation in a Semienclosed Bay with Erosional Shorelines: Hampyong Bay, West Coast of Korea (해안침식이 우세한 반폐쇄적 조간대의 퇴적작용: 한국 서해안의 함평만)

  • Chang, Jin-Ho;Kim, Yeo-Sang;Cho, Yeong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • Hampyong Bay is a semienclosed and macrotidal bay which opens to the eastern Yellow Sea through a narrow inlet in the southwestern coast of Korea. In order to understand the tidal-flat sedimentation in the semienclosed setting, morphology, sediments, accumulation rate and sea cliff erosion were investigated in the tidal flat of Hampyong Bay. The tidal flat of Hampyong Bay lacks intertidal drainage systems, and generally shows the concave-upward profile whose relief is designated by marked morphological features such as high-tide beaches, intertidal sand shoals and tidal creeks. Surfacial sediments of the tidal flat mainly consist of mud, sandy mud, gravelly mud, gravelly sand and muddy gravel, thus showing the textural characteristics of multimodal grain-size distribution, poorly sorting and positive skewness. The sediments generally coarsen landward due to the increase in coarse fraction content. Sedimentary structures are deeply bioturbated, but parallel lamination and lenticular bedding are locally found in the mudflat near mean low water line. Annual accumulation rates across the tidal flat (along Line SM) average -5.2 cm/yr with a range of -45.8~+4.2 cm/yr, indicating that the tidal flat is erosional. In general, erosion rates of upper and lower tidal flat are higher than those of middle tidal flat. Seasonally, the erosion rates are much higher during spring and winter when dominant wind direction corresponds to the long axis of Hampyong Bay. Sea cliffs are eroded at a rate of 1.4 m/yr. The biggest sea cliff erosion generally occurs 1~2 months later after tidal flats were extensively eroded. Such erosions of tidal Oats and sea cliffs in the semienclosed bay setting are interpreted to be due to wind waves coupled with local sea-level rise.

  • PDF

Anterolateral Ligament of the Knee: Anatomy, Biomechanics, Techniques, and Clinical Outcome (슬관절 전외측인대의 해부학, 생역학, 수술법 및 임상적 결과)

  • Kim, Seong Hwan;Lee, Tae-Hyub;Park, Yong-Beom
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.281-293
    • /
    • 2020
  • An anterior cruciate ligament (ACL) reconstruction is one of the most frequent surgical procedures in the knee joint, but despite the better understanding of anatomy and biomechanics, surgical reconstruction procedures still fail to restore rotational stability in 7%-16% of patients. Hence, many studies have attempted to identify the factors for rotational laxity, including the anterolateral ligament (ALL), but still showed controversies. Descriptions of the ALL anatomy are also confused by overlapping nomenclature, but it is usually known as a distinctive fiber running in an anteroinferior and oblique direction from the lateral epicondyle of the femur to the proximal anterolateral tibia, between the fibular head and Gerdy's tubercle. The importance of the ALL as a secondary restraint in the knee has been emphasized for successful ACL reconstructions that can restore rotational stability, but there is still some controversy. Some studies reported that the ALL could be a restraint to the tibial rotation, but not to anterior tibial translation. On the other hand, some studies reported that the role of ALL in rotational stability would be limited as a secondary structure because it bears loads only beyond normal biomechanical motion. The diagnosis of an ALL injury can be performed by a physical examination, radiology examination, and magnetic resonance imaging, but it should be assessed using a multimodal approach. Recently, ALL was considered one of the anterolateral complex structures, as well as the Kaplan fiber in the iliotibial band. Many studies have introduced many indications and treatment options, but there is still some debate. The treatment methods are introduced mainly as ALL reconstructions or lateral extra-articular tenodesis, which can achieve additional benefit to the knee stability. Further studies will be needed on the indications and proper surgical methods of ALL treatment.