• Title/Summary/Keyword: multimeric protein

Search Result 31, Processing Time 0.022 seconds

Development of Purification Process of Recombinant Human Vascular Endotherial Growth Factor (VEGF) using Fusion Protein (융합 단백질을 이용한 재조합 인간 혈관내피세포 성장인자의 정제공정 개발)

  • Sung, Keehyun;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.369-378
    • /
    • 2017
  • Vascular endotherial growth factor (VEGF) is a potent mitogen that stimulates vascular permeability and angiogenesis and has a potential in therapeutic applications. An industrial production method that provides high yield as well as purity is needed. Researches for various factors of mild solubilization with combination of ubiquitin fusion protein to increase solubility were carried out as well as by changing pH and denaturant concentration. Usage of pET28-a bacteral expression vector in BL21 (DE3) host cell was capable of producing approximately 14 g/L VEGF fusion protein in 20L fermentor. A purification process consisting of four chromatography steps including refolding and digestion with UBP1 resulted in mild solublization under the conditions of 2M urea and pH 10.0 due to ubiquitin fusion tag protein that increases in solubility of target protein VEGF. High yield of refolding and dimerization could be obtained between two step Ni-affinity chromatography. Multimeric and misfolded proteins and endotoxin were removed by DEAE anion exchange chromatography. Final monomers were removed from dimers by gel filtration chromatography. Characterization analysis of purified dimeric VEGF was performed using SDS-PAGE and RP-HPLC with a purity of 97%.

Expression of an Antimicrobial Peptide Magainin by a Promoter Inversion System

  • Lee, Jae-Hyun;Hong, Seung-Suh;Kim, Sun-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.34-41
    • /
    • 1998
  • A method was developed for the controlled expression of an antimicrobial peptide magainin in Escherichia coli. A series of concatemeric magainin genes was constructed with a gene amplification vector, and fused to the 3'end of malE gene encoding the affinity ligand, E. coli maltose-binding protein (MBP). The construct directed the synthesis of the fusion protein with the magainin polypeptide fused to the C-terminus of MBP. The fusion protein was expressed in a tightly regulatable expression system which was under the control of an invertible promoter. The MBP-fused magainin monomer was expressed efficiently. However, the expression level of the MBP-fused magainin in E. coli decreased with the increasing size of multimers possibly because of the transcription and translation inhibition by the multimeric peptides. After purification using an amylose affinity column, the fusion protein was digested by factor Xa at a specific cleavage site between the monomers. The recombinant magainin had an antimicrobial activity identical to that of synthetic magainin. This experiment shows that a biologically active, antimicrobial peptide magainin can be produced by fusing to MBP, along with a promoter inversion vector system.

  • PDF

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

Multimerization of Bovine Thyroglobulin, Partially Unfolded or Partially Unfolded/Reduced; Involvement of Protein Disulfide Isomerase and Glutathionylated Disulfide Linkage

  • Liu, Xi-Wen;Sok , Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1275-1283
    • /
    • 2004
  • Fate of the nascent thyrolglobulin (Tg) molecule is characterized by multimerization. To establish the formation of Tg multimers, the partially unfolded/reduced Tg or deoxycholate-treated/ reduced Tg was subjected to protein disulfide isomerase (PDI)-mediated multimerization. Oxidized glutathione/PDI-mediated formation of multimeric Tg forms, requiring at least an equivalent molar ratio of PDI/Tg monomer, decreased with increasing concentration of reduced glutathione (GSH), suggesting the oxidizing role of PDI. Additional support was obtained when PDI alone, at a PDI/Tg molar ratio of 0.3, expressed a rapid multimerization. Independently, the exposure of partially unfolded Tg to GSH resulted in Tg multimerization, enhanced by PDI, according to thiol-disulfide exchange. Though to a lower extent, a similar result was observed with the dimerization of deoxycholate-pretreated Tg monomer. Consequently, it is implied that intermolecular disulfide linkage may be facilitated at a limited region of unfolded Tg. In an attempt to examine the multimerization site, the cysteine residue-rich fragments of the Tg were subjected to GSH-induced multimerization; a 50 kDa fragment, containing three vicinal dithiols, was multimerized, while an N-terminal domain was not. Present results suggest that the oxidase as well as isomerase function of PDI may be involved in the multimerization of partially unfolded Tg or deoxycholate-treated Tg.

Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis

  • Ali Dalir Ghaffari;Fardin Rahimi
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.146-154
    • /
    • 2024
  • Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.

재조합 E. coli로부터 발현되는 철단백질의 분리 및 정제

  • Park, Hyeon-Gyu;Lee, Ji-Won;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.697-700
    • /
    • 2001
  • Iron is an essential nutrient for most organisms, which supplied to them in a protein-iron complex known as ferritin. Ferritins are multimeric proteins found in prokaryotes, plants and animals. They are consisted of spherical shell of 24 subunits defining a cavity of about 8nm in diameter, where an iron core is laid down. Expression of ferritin in recombinant E. coli at $37^{\circ}C$ led to the accumulation of recombinant ferritin. Insoluble form of ferritin was separated from disrupted cells, followed by various primary separation steps with two kinds of buffers. Collected samples from the primary steps were purified by DEAE-cellulose gels packed in a column. The fractions from the DEAE column were assayed to gain the amount and the purity of ferritin by using HPLC and SDS-PAGE.

  • PDF

Functional Assembly of Recombinant Human Ferritin Subunits in Pichia pastoris

  • Lee, Jung-Lim;Park, Cheon-Seok;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1695-1699
    • /
    • 2007
  • Ferritin is an iron storage protein found in most living organisms as a natural assembled macromolecule. For studying the functional ability of the ferritin assembly, human H- and L-ferritins were expressed and purified from Pichia pastoris strain GS115. The recombinant H- and L-ferritins showed a globular form with transmission electron microscopy. The rate of iron uptake for H-ferritin was significantly faster than that for the L-ferritin in vitro. By gel permeation chromatography analysis, recombinant ferritins were confirmed as multimeric subunits with high molecular weight and it was indicated that assembled subunits were able to store iron in vivo.

Purification of fusion ferritin using silica powder and DEAE chromatography

  • Heo, Yun-Seok;Kim, Seong-Gyu;Jeong, Eun-Mi;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.510-513
    • /
    • 2002
  • Iron is an essential nutrient for most organisms, which supplied to them in a protein-iron complex known as ferritin. Ferritins are multimeric proteins those are consisted of spherical shell of 24 subunits defining a cavity of about 8nm in diameter. Soluble form of ferritin was separated from disrupted cells, followed by silica powder adsorption. Ferritin was recovered from silica-poweder by distiiled water, which was applied to DEAE anion exchage chromatography. Collected fractions from the DEAE column were assayed to gain the amount and the purity of ferritin by using GF-HPLC.

  • PDF

Laminin-1 Phosphorylation by Protein Kinase A: Effect on self assembly and heparin binding

  • Koliakos, George;Kouzi-Koliakos, Kokkona;Triantos, Athanasios;Trachana, Varvara;Kavoukopoulos, Evaggelos;Gaitatzi, Mary;Dimitriadou, Aphrodite
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.370-378
    • /
    • 2000
  • Incubation of purified laminin1-nidogen1 complexes with $[{\gamma}-^{32}P]-ATP$ in the presence of the catalytic subunit of the protein kinase A (cAMP-dependent protein kinase) resulted in the phosphorylation of the alpha chain of laminin-1 and of the nidogen-1 molecule. Aminoacid electrophoresis indicated that phosphate was incorporated on serine residues. The phosphorylation effect of laminin-1 on the process of self assembly was studied by turbidometry. In these experiments, the phosphorylated laminin-1 showed a reduced maximal aggregation capacity in comparison to the non-phosphorylated molecule. Examination of the laminin-1 network under the electron microscope showed that the phosphorylated sample formed mainly linear extended oligomers, in contrast to controls that formed large and dense multimeric aggregates. Heparin binding on phosphorylated laminin-1 in comparison to controls was also tested using solid-phase binding assays. The results indicated an enhanced heparin binding to the phosphorylated protein. The results of this study indicate that laminin1-nidogen1 is a substrate for protein kinase A in vitro. This phosphorylation had an obvious influence on the lamininl-nidogen1 network formation and the heparin binding capacity of this molecule. However, further studies are needed to investigate whether or not this phenomenon could play a role in the formation of the structure of basement membranes in vivo.

  • PDF

Platelet-Agglutinating Protein p37 from a Patient with Thrombotic Thrombocytopenic Purpura Has Characteristics Similar to Prethrombin 2

  • Kim, Seung-Ho;Park, Soo-Jeong;Lee, Jong-Woo;Jin, Jong-Youl
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.524-531
    • /
    • 2002
  • Thrombotic thrombocytopenic purpura (TTP) is characterized by widespread platelet thrombi in arterioles and capillaries. Unusually large or multimeric von Willebrand factor, as well as one or ore platelet-agglutinating factors, have been implicated in the pathogenesis of TTP. But, the actual mechanisms of platelet agglutination have not been satisfactorily explained. Recent studies suggested the 37-kDa platelet-agglutinating protein (PAP) p37 to be partially responsible for the formation of platelet thrombi in patients with TTP. We studied mobility in SDS-PAGE, the sequence of N-terminal amino acid residues, DNA and antigenic characteristics of PAP p37, which might be related to the pathogenesis of TTP. PAP p37 was purified from the plasma of a 31-year-old male Korean patient with acute TTP. The findings are as follows: (1) We compared PAP p37 with thrombin through the use of SDS-PAGE, either with or without $\beta$-mercaptoethanol. PAP p37 did not appear to be cleaved between the A- and B-chains of prethrombin 2. However, thrombin did cleave between those of prethrombin 2, but linked with disulfide bridge. (2) N-terminal 21 amino acid sequence of PAP p37 was T-F-G-S-G-E-A-D-X-G-L-R-P-L-F-E-K-K-S-L-E. It appeared to be identical to that of 285-305 amino acid residues of human prothrombin (prethrombin 2). (3) No prothrombin gene DNA mutation was revealed. (4). The antigenicity of PAP p37 was similar to thrombin, which was a result of the competitive binding against the anti-thrombin antibody. With these results, we conclude that PAP p37 has similar characteristics to prethrombin2.