• Title/Summary/Keyword: multilinear commutator

Search Result 6, Processing Time 0.019 seconds

MULTIPLE WEIGHTED ESTIMATES FOR MULTILINEAR COMMUTATORS OF MULTILINEAR SINGULAR INTEGRALS WITH GENERALIZED KERNELS

  • Liwen Gao;Yan Lin;Shuhui Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.207-226
    • /
    • 2024
  • In this paper, the weighted Lp boundedness of multilinear commutators and multilinear iterated commutators generated by the multilinear singular integral operators with generalized kernels and BMO functions is established, where the weight is multiple weight. Our results are generalizations of the corresponding results for multilinear singular integral operators with standard kernels and Dini kernels under certain conditions.

SOME ESTIMATES FOR GENERALIZED COMMUTATORS OF MULTILINEAR CALDERÓN-ZYGMUND OPERATORS

  • Honghai Liu;Zengyan Si;Ling Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.541-560
    • /
    • 2023
  • Let T be an m-linear Calderón-Zygmund operator. $T_{{\vec{b}S}}$ is the generalized commutator of T with a class of measurable functions {bi}i=1. In this paper, we will give some new estimates for $T_{{\vec{b}S}}$ when {bi}i=1 belongs to Orlicz-type space and Lipschitz space, respectively.

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.

MULTILINEAR CALDERÓN-ZYGMUND OPERATORS AND THEIR COMMUTATORS ON CENTRAL MORREY SPACES WITH VARIABLE EXPONENT

  • Wang, Liwei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1427-1449
    • /
    • 2020
  • In this paper, we establish the boundedness of the m-linear Calderón-Zygmund operators on product of central Morrey spaces with variable exponent. The corresponding boundedness properties of their commutators with λ-central BMO symbols are also considered. Finally, we prove that the multilinear commutators of Calderón-Zygmund singular integrals introduced by Pérez and Trujillo-Gonález are bounded on central Morrey spaces with variable exponent. Our results improve and generalize some previous classical results to the variable exponent setting.

GENERALIZED DERIVATIONS WITH CENTRALIZING CONDITIONS IN PRIME RINGS

  • Das, Priyadwip;Dhara, Basudeb;Kar, Sukhendu
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.83-93
    • /
    • 2019
  • Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R and f($x_1,{\ldots},x_n$) a noncentral multilinear polynomial over C in n noncommuting variables. Denote by f(R) the set of all the evaluations of f($x_1,{\ldots},x_n$) on R. If d is a nonzero derivation of R and G a nonzero generalized derivation of R such that $$d(G(u)u){\in}Z(R)$$ for all $u{\in}f(R)$, then $f(x_1,{\ldots},x_n)^2$ is central-valued on R and there exists $b{\in}U$ such that G(x) = bx for all $x{\in}R$ with $d(b){\in}C$. As an application of this result, we investigate the commutator $[F(u)u,G(v)v]{\in}Z(R)$ for all $u,v{\in}f(R)$, where F and G are two nonzero generalized derivations of R.