• 제목/요약/키워드: multilevel systems

검색결과 135건 처리시간 0.024초

A Practical Algorithm for Selective Harmonic Elimination in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1650-1658
    • /
    • 2018
  • Multilevel converters are being widely used in medium-voltage high-power applications including motor drive systems, utility power transmission, and distribution systems. Selective harmonic elimination (SHE) is a well-known modulation method to generate high quality output voltage waveforms. This paper presents a new simple practical method for generating a generalized five-level waveform without selected low order harmonics. This method is based on a phase-shifted expression for the SHE problem, which can analytically calculate the exact values of switching angles and the feasible modulation index range for three-level and five-level waveforms. The proposed method automatically determines the number of transitions between levels and generates proper output waveform without solving complex trigonometric equations. Due to the simplicity of the computational burden, the real-time implementation of the proposed algorithm can be performed by a simple processor. Simulation and experiment results verify the correctness and effectiveness of the proposed method.

고정 샘플링 주파수에서의 모듈형 멀티레벨 컨버터 레벨 선택 알고리즘 (Level Selection Algorithm with Fixed Sampling Frequency for Modular Multilevel Converter)

  • 김찬기;박창환;김장목
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.415-423
    • /
    • 2018
  • This study uses a level selection algorithm with fixed sampling frequency for modular multilevel converter (MMC) systems. Theoretically, the proposed method increases the level infinitely while the sampling time remains the same. The proposed method called cluster stream buffer (CSB) consists of several clusters, wherein each cluster is composed of 32 submodules that depend on the level of the submodules in the MMC system. To increase the level of the MMC system, additional clusters are used, and the sampling time between clusters is determined from the sampling time between levels needed for utilizing the entire level from the MMC system. This method is crucial in the control of MMC-type HVDC systems because it improves scalability and precision.

다단계 보안 스키마 설계를 위한 IDEA 방법론의 확장 (The extension of the IDEA Methodology for a multilevel secure schema design)

  • 김정종;박운재;심갑식
    • 한국정보처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.879-890
    • /
    • 2000
  • 다단계 데이터베이스 응용의 설계는 복잡한 과정이며, 적절한 모델을 이용하여 개체나 그의 연관 보안 등급을 모호하지 않게 표현해야 한다. 또한, 다단계 데이터 베이스 응용에 대한 의미를 가능한 한 정확하게 파악하는 것도 중요하다. 미보호 데이터 베이스 응용 설계를 위한 IDEA 방법론은 데이터 집약 시스템에 초점을 두고 있기 때문에, 그 객체 모델에서는 응용에 대한 객체의 경직 구조와 그의 관련성을 서술한다. 다시 말해서 IDEA 방법론의 객체 모델은 객체의 정적 서술을 하기 위한 확정돈 개체-관련성 모델이다. IDEA 방법론이 다단계 보인 데이터베이스 응용을 위해 개발되지 않았지만, 기존의 방법론을 활용함으로써 그 방법론에서 개발된 여러 기법들을 이용할 수 있다. 즉, 이 방식은 다단계 보안 스키마를 처음부터 개발하는 것보다더 용이하다. 본 논문에서는 IDEA 방법론의 객체 모델에 보안 특징을 첨가하고, 이 모델을 다단계 보안 객체지형 스키마로의 변환을 제시한다. 이 다단계 보안 스키마는 Informix-Oniline/Secure, Trustrd ORACLE. Sybase Secure SQL Server와 같은 여러 상용 다단계 보안 데이터 베이스 관리 시스템으로 자동 변환하기 위한 일반적인 스킬을 설계하는 예비 연구가 될 것이다.

  • PDF

QoS-Oriented Solutions for Satellite Broadcasting Systems

  • Vargas, Aharon;Gerstacker, Wolfgang H.;Breiling, Marco
    • Journal of Communications and Networks
    • /
    • 제12권6호
    • /
    • pp.558-567
    • /
    • 2010
  • In this paper, we analyze the capability of satellite broadcasting systems to offer different levels of quality of service (QoS). We focus on the European telecommunications standards institute satellite digital radio and digital video broadcasting satellite handheld (DVB-SH) standards, which have recently been proposed for satellite broadcasting communications. We propose a strategy to provide different levels of QoS for the DVB-SH standard on the basis of an extension of the interleaving scheme, referred to as molded interleaver, which supports low latency service requirements for interactive services. An extensive analysis based on laboratory measurements shows the benefits of this solution. We also present a multilevel coding (MLC) scheme with multistage decoding designed for broadcasting communications as an alternative to the existing standards, where services with different levels of QoS are provided. We present a graphical method based on mutual information for the design and evaluation of MLC systems used for broadcasting communications. Extensive simulations for a typical satellite channel show the viability of the proposed MLC scheme. Finally, we introduce multidimensional constellations in the proposed MLC scheme in order to increase the number of different protection levels.

A Conceptual Data Model for a 3D Cadastre in Korea

  • Lee, Ji-Yeong;Koh, June-Hwan
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.565-574
    • /
    • 2007
  • Because of most current cadastral systems maintain 2D geometric descriptions of parcels linked to administrative records, the system may not reflect current tendency to use space above and under the surface. The land has been used in multi-levels, e.g. constructions of multi-used complex buildings, subways and infrastructure above/under the ground. This cadastre situation of multilevel use of lands cannot be defined as cadastre objects (2D parcel-based) in the cadastre systems. This trend has requested a new system in which right to land is clearly and indisputably recorded because a right of ownership on a parcel relates to a space in 3D, not any more relates to 2D surface area. Therefore, this article proposes a 3D spatial data model to represent geometrical and topological data of 3D (property) situation on multilevel uses of lands in 3D cadastre systems, and a conceptual 3D cadastral model in Korea to design a conceptual schema for a 3D cadastre. Lastly, this paper presents the results of an experimental implementation of the 3D Cadastre to perform topological analyses based on 3D Network Data Model to identify spatial neighbors.

Novel Control of a Modular Multilevel Converter for Photovoltaic Applications

  • Shadlu, Milad Samady
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.103-110
    • /
    • 2017
  • The number of applications of solar photovoltaic (PV) systems in power generation grids has increased in the last decade because of their ability to generate efficient and reliable power in a variety of low installation in domestic applications. Various PV converter topologies have therefore emerged, among which the modular multilevel converter (MMC) is very attractive due to its modularity and transformerless features. The modeling and control of the MMC has become an interesting issue due to the extremely large expansion of PV power plants at the residential scale and due to the power quality requirement of this application. This paper proposes a novel control method of MMC which is used to directly integrate the photovoltaic arrays with the power grid. Traditionally, a closed loop control has been used, although circulating current control and capacitors voltage balancing in each individual leg have remained unsolved problem. In this paper, the integration of model predictive control (MPC) and traditional closed loop control is proposed to control the MMC structure in a PV grid tied mode. Simulation results demonstrate the efficiency and effectiveness of the proposed control model.

Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling

  • Song, Mengchu;Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.542-552
    • /
    • 2018
  • Operators face challenges to plan alternative countermeasures when no procedure exists to address the current plant state. A model-based approach is desired to aid operators in acquiring plant resources and deriving response plans. Multilevel flow modeling (MFM) is a functional modeling methodology that can represent intentional knowledge about systems, which is essential in response planning. This article investigates the capabilities of MFM to plan alternatives. It is concluded that MFM has a knowledge capability to represent alternative means that are designed for given ends and a reasoning capability to identify alternative functions that can causally influence the goal achievement. The second capability can be applied to find originally unassociated means to achieve a goal. This is vital in a situation where all designed means have failed. A technique of procedure synthesis can be used to express identified alternatives as a series of operations. A case of station blackout occurring at the boiling water reactor is described. An MFM model of a boiling water reactor is built according to the analysis of goals and functions. The accident situations are defined by the model, and several alternative countermeasures in terms of operating procedures are generated to achieve the goal of core cooling.

독립형 태양광 발전 시스템을 위한 새로운 19레벨 PWM 인버터 (A New 19-level PWM Inverter for the Use of Stand-alone Photovoltaic Power Generation Systems)

  • 강필순;오석규;박성준
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권7호
    • /
    • pp.452-461
    • /
    • 2004
  • A novel multilevel PWM inverter is presented for the use of stand-alone photovoltaic power generation system. In appearance, it consists of three full-bridge modules and three cascaded transformers; therefore, the configuration of the proposed multilevel PW inverter is equal to that of a prior 11-level PWM inverter. Only the turn-ratio of a transformer and its corresponding switching function are different from each other. Owing to these differences, the proposed 19-level PWM inverter has two promising advantages. First, output voltage levels increase almost twofold. Consequently, it can generate more sinusoidal output voltage waveform. Second, due to a revised switching pattern, it lightens power imposed on the transformer, which is used for compensating output voltages with chopped pulses between steps. The validity of the proposed inverter system is verified by computer-aided simulations and experimental results based on a 1 [kW] prototype. The performance of the proposed 19-level PWM inverter is compared with the Prior 11-level PWM inverter and other counterparts.

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.