• 제목/요약/키워드: multilevel inverter

검색결과 251건 처리시간 0.022초

직렬형 멀티레벨 인버터를 사용한 대용량 무효전력 보상장치의 파라메타 설계 (Design of Parameters for High Power Static Var Compensator Used Cascade Multilevel Inverter)

  • 민완기;최재호
    • 전기학회논문지P
    • /
    • 제52권4호
    • /
    • pp.172-178
    • /
    • 2003
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). This method has the primary advantage that the number of voltage levels can be increased for a given number of semiconductor devices when compared to the conventional control methods. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. From the mathematical model of the system, the design procedures of the circuit parameters L and C are presented in this thesis. To meet the specific total harmonic distortion(THD) and ripple factor of the capacitor voltage, the circuit parameters L and C are designed. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

Harmonics Elimination in a Multilevel Inverter with Unequal DC Sources Using a Genetic Algorithm

  • Iranaq, Ali Reza Marami;Kouhshahi, Mojtaba Bahrami;Kouhshahi, Mehdi Bahrami;Sharifian, Mohammad Bagher Bannae;Sabahi, Mehran
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.77-83
    • /
    • 2012
  • In this paper, an optimal solution to the harmonic reduction problem in a cascaded multilevel inverter with non-equal DC sources using a genetic algorithm (GA) is presented. Switching angles are generated for different values of modulation index by the proposed algorithm, considering minimum voltage total harmonic distortion (THD) whereas selected harmonics are controlled within the allowable limits at all desired modulation indices including the point of discontinuity. Results are stored as a look-up table to be used to control the inverter for a certain operating point. The computed angles are used in a simulated circuit in Matlab\Simulink to validate the results.

Generalized Selective Harmonic Elimination Modulation for Transistor-Clamped H-Bridge Multilevel Inverter

  • Halim, Wahidah Abd.;Rahim, Nasrudin Abd.;Azri, Maaspaliza
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.964-973
    • /
    • 2015
  • This paper presents a simple approach for the selective harmonic elimination (SHE) of multilevel inverter based on the transistor-clamped H-bridge (TCHB) family. The SHE modulation is derived from the sinusoidal voltage-angle equal criteria corresponding to the optimized switching angles. The switching angles are computed offline by solving transcendental non-linear equations characterizing the harmonic contents using the Newton-Raphson method to produce an optimum stepped output. Simulation and experimental tests are conducted for verification of the analytical solutions. An Altera DE2 field-programmable gate array (FPGA) board is used as the digital controller device in order to verify the proposed SHE modulation in real-time applications. An analysis of the voltage total harmonic distortion (THD) has been obtained for multiple output voltage cases. In terms of the THD, the results showed that the higher the number of output levels, the lower the THD due to an increase number of harmonic orders being eliminated.

Novel Single-State PWM Technique for Common-Mode Voltage Elimination in Multilevel Inverters

  • Nguyen, Nho-Van;Quach, Hai-Thanh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.548-558
    • /
    • 2012
  • In this paper, a novel offset-based single-state pulse width modulation (PWM) method for achieving zero common-mode voltage (CMV) and reducing switching losses in multilevel inverters is presented. The specific active switching state of the zero common-mode (ZCM) voltage that approximates the reference voltage can be deduced from the switching state sequence of the reduced CMV phase disposition PWM (CMV PD PWM) method. From the reference leg voltages for the zero common-mode voltage, an N-to-2-level transformation defines a virtual two-level inverter and the corresponding nominal leg voltage references. The commutation process of the reduced CMV PD PWM method in a multilevel inverter and its outputs can be simply followed in a nominal switching time diagram for the virtual inverter. The characteristics of the reduced CMV PD PWM and the single-state PWM for zero common-mode voltage are analyzed in detail in this paper. The theoretical analysis of the proposed PWM method is verified by experimental results.

멀티레벨 승압 DC-DC 컨버터와 구성된 독립형 부하를 위한 단상 5레벨 인버터 (Single Phase Five Level Inverter For Off-Grid Applications Constructed with Multilevel Step-Up DC-DC Converter)

  • 이바둘라예브 안바르;박성준
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.319-328
    • /
    • 2020
  • The recent use of distributed power generation systems constructed with DC-DC converters has become extremely popular owing to the rising need for environment friendly energy generation power systems. In this study, a new single-phase five-level inverter for off-grid applications constructed with a multilevel DC-DC step-up converter is proposed to boost a low-level DC voltage (36 V-64 V) to a high-level DC bus (380 V) and invert and connect them with a single-phase 230 V rms AC load. Compared with other traditional multilevel inverters, the proposed five-level inverter has a reduced number of switching devices, can generate high-quality power with lower THD values, and has balanced voltage stress for DC capacitors. Moreover, the proposed topology does not require multiple DC sources. Finally, the performance of the proposed topology is presented through the simulation and experimental results of a 400 W hardware prototype.

Predictive Current Control for Multilevel Cascaded H-Bridge Inverters Based on a Deadbeat Solution

  • Qi, Chen;Tu, Pengfei;Wang, Peng;Zagrodnik, Michael
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.76-87
    • /
    • 2017
  • Finite-set predictive current control (FS-PCC) is advantageous for power converters due to its high dynamic performance and has received increasing interest in multilevel inverters. Among multilevel inverter topologies, the cascaded H-bridge (CHB) inverter is popular and mature in the industry. However, a main drawback of FS-PCC is its large computational burden, especially for the application of CHB inverters. In this paper, an FS-PCC method based on a deadbeat solution for three-phase zero-common-mode-voltage CHB inverters is proposed. In the proposed method, an inverse model of the load is utilized to calculate the reference voltage based on the reference current. In addition, a cost function is directly expressed in the terms of the voltage errors. An optimal control actuation is selected by minimizing the cost function. In the proposed method, only three instead of all of the control actuations are used for the calculations in one sampling period. This leads to a significant reduction in computations. The proposed method is tested on a three-phase 5-level CHB inverter. Simulation and experimental results show a very similar and comparable control performance from the proposed method compared with the traditional FS-PCC method which evaluates the cost function for all of the control actuations.

Cascaded H-bridge PWM 멀티레벨인버터의 스위칭 손실 저감을 위한 효율적인 스위칭 패턴 (Efficient Switching Pattern to Decrease Switching Losses in Cascaded H-bridge PWM Multilevel Inverter)

  • 정보창;김선필;김광수;박성준;강필순
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.502-509
    • /
    • 2013
  • It presents an efficient switching pattern, which expects a reduction of switching losses in a cascaded H-bridge PWM multilevel inverter. By the proposed switching scheme, the lower H-bridge module operates at low frequency of 60[Hz] because it assigns to transfer most load power. The upper H-bridge module operates at high frequency of PWM switching to improve THD of output voltage. The proposed switching pattern applies to cascaded H-bridge multilevel inverter with PD, APOD, bipolar, and unipolar switching methods. By computer-aided simulations, we verify the validity of the proposed switching scheme. Finally, we prove that the proposed PD and APOD switching patterns are better than those of the conventional one in efficiency.

모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘 (An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter)

  • 김이김;곽상신
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.

멀티레벨 PWM 인버터/정류기의 모델링 (Modeling of Multilevel PWM Inverter/Rectifier)

  • 최남섭;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1119-1122
    • /
    • 1992
  • This paper deals with a novel method of modeling and analyzing multilevel pulse width modulation(PWM) inverter/rectifier, which leads to extraction of equivalent circuit in fundamental frequency domain. By the technique, we can draw out the corresponding linear time invariant circuit even thuogh the actual circuit is switched. A static VAR compensator using five-level inverter is modeled and simulated for the verification of the modeling.

  • PDF

Analysis and Implementation of Multiphase Multilevel Hybrid Single Carrier Sinusoidal Modulation

  • Govindaraju, C.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.365-373
    • /
    • 2010
  • This paper proposes a hybrid single carrier sinusoidal modulation suitable for multiphase multilevel inverters. Multiphase multilevel inverters are controlled by hybrid modulation to provide multiphase variable voltage and a variable frequency supply. The proposed modulation combines the benefits of fundamental frequency modulation and single carrier sinusoidal modulation (SC-SPWM) strategies. The main characteristics of hybrid modulation are a reduction in switching losses and improved harmonic performance. The proposed algorithm can be applied to cascaded multilevel inverter topologies. It has low computational complexity and it is suitable for hardware implementations. SC-SPWM and its base modulation design are implemented on a TMS320F2407 digital signal processor (DSP). A Complex Programmable Logic Device realizes the hybrid PWM algorithm and it is integrated with a DSP processor for hybrid SC-SPWM generation. The feasibility of this hybrid modulation is verified by spectral analysis, power loss analysis, simulation and experimental results.