• Title/Summary/Keyword: multilayered film

Search Result 87, Processing Time 0.026 seconds

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules (태양광모듈용 저가형 백시트 제조를 위한 고수분차단성 유무기 나노복합형 접착제)

  • Hwang, Jin Pyo;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.

Decision of Interface and Depth Scale Calibration of Multilayer Films by SIMS Depth Profiling

  • Hwang, Hye-Hyun;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.274-274
    • /
    • 2012
  • In-depth analysis by secondary ion mass spectrometry (SIMS) is very important for the development of electronic devices using multilayered structures, because the quantity and depth distribution of some elements are critical for the electronic properties. Correct determination of the interface locations is critical for the calibration of the depth scale in SIMS depth profiling analysis of multilayer films. However, the interface locations are distorted from real ones by the several effects due to sputtering with energetic ions. In this study, the determination of interface locations in SIMS depth profiling of multilayer films was investigated by Si/Ge and Ti/Si multilayer systems. The original SIMS depth profiles were converted into compositional depth profiles by the relative sensitivity factors (RSF) derived from the atomic compositions of Si-Ge and Si-Ti alloy reference films determined by Rutherford backscattering spectroscopy. The thicknesses of the Si/Ge and Ti/Si multilayer films measured by SIMS depth profiling with various impact energy ion beam were compared with those measured by TEM. There are two methods to determine the interface locations. The one is the feasibility of 50 atomic % definition in SIMS composition depth profiling. And another one is using a distribution of SiGe and SiTi dimer ions. This study showed that the layer thicknesses measured with low energy oxygen and Cs ion beam and, by extension, with method of 50 atomic % definition were well correlated with the real thicknesses determined by TEM.

  • PDF

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

Reflecting Academic Symposia as a Trend at Animation Festivals, Media Art Festivals and Conferences on Computer Animation (학술회 반영 경향의 애니메이션 페스티벌과 미디어 아트 페스티벌 그리고 컴퓨터 애니메이션 학회)

  • Hagler, Juergen;Bruckner, Franziska
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.611-631
    • /
    • 2017
  • At first there was practice, then festivals and theory followed. Compared to the animation production, which is older then the medium film itself, festivals and theory in this area started with a delay. While animation programs where shown in film festivals like Cannes since the mid 1940s, the first animation festival in Annecy, France was founded in 1960, followed by several short-lived events in Romania, Italy and Tokyo and finally in 1972 by the second oldest festival up to date, Animafest Zagreb. Animation theory evolved in the late 1980s in the Anglo-American area with associations like the Society for Animation Studies, following its 'big sister' film studies. Expanding ever since as a research area, European animation studies in e.g. France, German speaking countries, Poland or Croatia have been catching up in recent years by organizing theoretical conferences and publications. A vivid synergy between practice, festivals and theory has always been a key factor for establishing a platform for the art form and culture of animation. However, in the past few years a trend could be observed towards a more intense interaction between animation festivals and theory. Animation festivals are hosting theoretical and scientific symposia or conferences, which are open for artist positions and insights into the industry. At the beginning of the lecture a short reflection of the concept of Animafest Scanner itself is followed by an introduction of the Symposium Expanded Animation at the media festival Ars Electronica Linz. The talk will subsequently focus on the multilayered academic symposia at the Festival of Animated Film ITFS and the International Conference on Animation, Effects, VR, Games and Transmedia in Stuttgart. These case studies will reveal the blurring boundaries between art, science, theory and industry as well as the specificities of the interplay between artists, practitioners, scholars, curators and festival visitors in different formats.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. I. Fluctuations of Temperature and Light Environment in the Multilayered Plastic House Grown Red Pepper (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 I. 다중피복 고추육묘 시설내의 온도 및 광환경 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.106-118
    • /
    • 1994
  • This study was conducted to analyze the effects of fluctuations in temperature, light intensity and soil temperature on the growth of red pepper seedlings in the nonheated plastic houses with various number of layers and in the open field. Relationship between the optimal environment and the growth of seedlings was discussed, and the maximum and minimum outdoor temperatures in Kwangju area from 1941 to 1985 were analyzed. The results obtained were as follows; 1. The minimum temperature in tunnel with quadruple coverings of P. E. film from December 20 to February 25 was decreased to 5$^{\circ}C$ mostly, where the exposure to chilling temperature could not be avoided during this period. The maximum temperature was increased to 33$^{\circ}C$ mostly and 42$^{\circ}C$ in peak, where some ventilation was needed. 2. The diurnal differences of inside temperature, increasing with number of layers, were 16 to 38$^{\circ}C$, while those of outside temperature were 5 to 1$0^{\circ}C$. 3. The cold injury in the quadruple coverings during winter occurred all the times below 12$^{\circ}C$ and as many as 200 times over 3$0^{\circ}C$, while effectiveness of thermal insulation in the multilayered nonheating plastic houses were clearly proved. 4. The inside light intensity was markedly reduced with the increment of layers and the minimum light intensity fallen down below the light compensation point for the growth of red pepper plants regardless of the number of layers. 5. Until 10 a. m., the temperature in the daytime during December 20 to mid - February showed below 10 to 12$^{\circ}C$ which was the limiting temperature for the growth of red pepper seedlings. After 4 p. m., the light intensity was sharply reduced despite of the air temperature kept over 12$^{\circ}C$. Therefore, limiting factors for the growth of red pepper seedlings were the temperature before 10 a. m. and the light intensity after 4 p. m. 6. The minimum soil temperature in quadruple coverings showed around 1$0^{\circ}C$ where the physiological damage for red pepper seedlings might be occurred. 7. The minimum outdoor temperatures from 1941 to 1985 was -19.4$^{\circ}C$, observed in the 5th January.

  • PDF

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF