• Title/Summary/Keyword: multifunctional wall

Search Result 18, Processing Time 0.04 seconds

Evaluating the impact of urban multifunctional walls on pedestrian wind comfort on street sidewalks (Case study: Tabriz city)

  • Parinaz Badamchizadeh;Paria Saadatjoo;Majid Ahmadlouydarab;Guoqiang Zhang
    • Wind and Structures
    • /
    • v.39 no.3
    • /
    • pp.223-242
    • /
    • 2024
  • Wind comfort in cold climates is one of the most essential factors for urban planners. This issue is particularly important for sidewalks that are in line with the prevailing wind flow and surrounded by high-rise buildings. Imam Street near the University Square in Tabriz is one of the passages that struggle with uncomfortable wind speeds. The aim of this study is to investigate the role of sidewalk walls on pedestrian wind comfort. These multifunctional walls not only serve as street furniture, but also reduce wind speed at pedestrian level. In this work, all simulations are performed using the RWIND tool and validated by wind tunnel experiments at the Architectural Institute of Japan. The main objective of this study is to evaluate the effects of the angle, height and spacing of the walls on wind attenuation at pedestrian level. The results show the effect of multifunctional walls on pedestrian-level wind mitigation. By rotating the windbreak walls from 0 to 60 degrees along the street, the average wind speed decreases by 30% to 46% compared to a situation without this type of wall. Increasing the wall height from 1.5 to 2 meters reduces the urban wind speed by 39-46%. However, increasing the distance between the sidewalk walls from 3.5-9.5 meters reduces the speed in the models from 46% to 32.7%. Finally, it has been demonstrated that sidewalk walls with a height of 2 meters, a rotation angle of 60° and a distance of 3.5 meters are the optimal choice for wind attenuation at pedestrian level.

Immunostimulation Effects of Cell Wall Components Isolated from Lactobacillus plantarum

  • TAE BOO CHOE;KANG, KWAN YUEB;SUNG HO PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.195-199
    • /
    • 1994
  • Immunostimulation effects of the cell wall components isolated from Lactobacillus plantarum were investigated by studying the macrophage s tumorcidal activity, splenocyte proliferation, anticomplementary activity and the inhibition of peritoneal tumor cell growth measured with ICR mice inoculated with sarcoma 180. The immunopotentiating cell wall components were a complex of peptidoglycan and exopolysaccharides. The tumorcidal activity of macrophage against Yacl and B16 tumor cells was enhanced when the cell wall components were added into the macrophage s culture medium. They also stimulated splenocytes to proliferate up to the same level as when the concanavalin A was added into the splenocyte's culture medium. The complementary activity was inhibited by 50% when the cell wall components were incubated with the sheep red blood cells treated with hemolysin and guinea pig complement. This result confirmed that the cell wall components had an antitumor effect, because the anticomplementary activity is usually accompanied by an antitumor activity at the same time. This fact was confirmed again by the inhibition of the growth of sarcoma 180 when the cell wall components were injected intraperitoneally into ICR mice inoculated with sarcoma 180. As a result, it is concluded that the cell wall components isolated from Lactobacillus plantarum had multifunctional immunostimulation effects in vitro and in vivo.

  • PDF

The Production of Microcapsules containing Cinnamon and Aromatic, Antimicrobial Finishing(Part I) (계피정유를 함유한 마이크로캡슐의 제조 및 방향.항균가공(제1보))

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.3
    • /
    • pp.569-576
    • /
    • 2001
  • The purpose of this study is to develop multifunctional fibers by sticking cinnamon microcapsules on cotton knit. The prepolymer was made from urea-formaldehyde for usage of wall materials of microcapsules. The parameters for adoptable condition are 5000rpm of agitation speed, 1% of dispersions concentration according to the observation with SEM and particle analyzer. The Antimicrobial activity of cotton knit treated with capsule was increased greatly and maintained on the laundering cycle.

  • PDF

Seismic retrofitting of a tower with shear wall in UHPC based dune sand

  • Trabelsi, Abderraouf;Kammoun, Zied;Beddey, Aouicha
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.591-601
    • /
    • 2017
  • To prevent or limit the damage caused by earthquakes on existing buildings, several retrofitting techniques are possible. In this work, an ultra high performance concrete based on sand dune has been formulated for use in the reinforcement of a multifunctional tower in the city of Skikda in Algeria. Tests on the formulated ultra high performance concrete are performed to determine its characteristics. A nonlinear dynamic analysis, based on the "Pushover" method was conducted. The analysis allowed an optimization of the width of reinforced concrete walls used in seismic strengthening. Two types of concrete are studied, the ordinary concrete and the ultra high performance concrete. Both alternatives are compared with the reinforcement with carbon fibers and by base isolation retrofit design.

The Effect of Single Wall Carbon Nanotubes on the Dipole Orientation and Piezoelectric Properties of Polymeric Nanocomposites

  • Kang, Jin-Ho;Park, Cheol;Gaik Steven J.;Lowther Sharon E.;Harrison Joycelyn S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.245-245
    • /
    • 2006
  • Recent studies of single wall carbon nanotube (SWNT)/polyimide nanocomposites indicate that these materials have a potential to provide the combination of structural integrity and sensing/actuation capability. This study shows the effect of the SWNT type and concentration on the dipole orientation and piezoelectric properties of the electroactive polymide nanocomposites using a thermally stimulated current (TSC) spectroscopy. These nanocomposites exhibit very thermally stable piezoelectric properties up to $150^{\circ}C$. This presentation will highlight the dipole orientation and electroactive characteristics of the SWNT/polyimide nanocomposites and discuss their potential multifunctional aerospace applications.

  • PDF

Omni-directional Gait Control of Quadruped Walking Robot

  • Son, Tae-Young;Kang, Tae-Hun;Kim, Hyung-Seok;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2529-2534
    • /
    • 2003
  • A quadruped walking robot has a superior adaptablility as well as highly adaptable mobility in various environments. These special advantages are outstanding in the mobile robot group. In this work, we introduce the method for omni-directional gait and rotational gait which is the generalized control algorithm to perform any direction commands. In addition, to improve the stability of quadruped walking robot, we performed the optimization between walking angle and sequence of feet. The proposed ideas are applied to the actual design of MRWALLSPECT III(Multifunctional Robot for Wall inSpection version 3) that is designed to inspect of the large surface of industrial utilities. By implementing the proposed idea on the robot, it’s effectiveness is experimentally confirmed.

  • PDF

Unified Strategy for Quadruped Walking Robot in Unstructured Environment

  • Kang, Tae-Hun;Son, Tae-Young;Kim, Hyung-Seok;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.639-644
    • /
    • 2003
  • An unstructured environment requires a robot to possess outstanding mobility and advanced control algorithms since there exist complicated configurations such as obstacle, uneven surface, etc. Especially, when a quadruped robot walks in these environments, obstacles in the walking route will obstruct the walking or may give rise to a serious trouble. In this paper, we introduce a strategy for the stable walking in unstructured environment. The proposed strategy consists of two control algorithms. One is a collision{free algorithm to avoid obstacles and the other is an algorithm to overcome any obstacle. These are based on the obstacle detection method and a shape reconstruction algorithm, Which algorithms are described in detail. In addition, the validity of these algorithms have been demonstrated through experiments using a quadruped walking robot called "MRWALLSPECT III(Multifunctional Robot for Wall inSPECTion version 3 )".

  • PDF

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

Nondestructive Sensing Evaluation of Ni Nanowire Strands and Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Techniques (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 및 Carbon Nanotube 강화 에폭시 복합재료의 비파괴 감지능 평가)

  • Jung, Jin-Gyu;Kim, Sung-Ju;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.269-272
    • /
    • 2005
  • Nondestructive damage sensing and load transferring mechanism of Ni nanowire strands and multi-wall carbon nanotube (MWCNT)/epoxy composites were investigated using electro-micromechanical techniques. MWCNT composite was especially prepared for high volume contents, 50 vol % of reinforcement. Electro-micromechanical techniques were applied to measure apparent modulus and contact resistance of Ni nanocomposites with their alignment and different diameters, and adding contents. Applied cyclic load affected on apparent modulus and electrical properties on nanocomposites due to various inherent properties of each CNMs. Contact resistivity on humidity sensing was a good indicator for monitoring as for multifunctional applications. Further study on actuation as well as sensing will be investigated for the following work continuously.

  • PDF

Gait Planning of Quadruped Walking and Climbing Robot in Convex Corner Environment

  • Loc, Vo Gia;Kang, Tae-Hun;Song, Hyun-Sup;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.314-319
    • /
    • 2005
  • When a robot navigates in the real environment, it frequently meets various environments that can be expressed by simple geometrical shapes such as fiat floor, uneven floor, floor with obstacles, slopes, concave or convex corners, etc. Among them, the convex corner composed of two plain surfaces is the most difficult one for the robot to negotiate. In this paper, we propose a gait planning algorithm to help the robot overcome the convex environment. The trajectory of the body is derived from the maximum distance between the edge boundary of the corner and the bottom of the robot when it travels in the convex environment. Additionally, we find the relation between kinematical structure of the robot and its ability of avoiding collision. The relation is realized by considering the workspace and the best posture of the robot in the convex structure. To provide necessary information for the algorithm, we use an IR sensor attached in the leg of the robot to perceive the convex environment. The validity of the gait planning algorithm is verified through simulations and the performance is demonstrated using a quadruped walking robot, called "MRWALLSPECT III"( Multifunctional Robot for WALL inSPECTion version 3).

  • PDF