• Title/Summary/Keyword: multifunctional materials

Search Result 185, Processing Time 0.027 seconds

Recent Research Trend in Multifunctional Wearable Energy Storage Devices (다기능성 웨어러블 에너지 저장 장치 연구동향)

  • Park, Sangbaek
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.23-39
    • /
    • 2020
  • 4차 산업혁명의 초연결/초지능 사회가 현실화 되면서 모든 제품이 배터리에 연결되는 사물배터리(battery of things) 시대가 열리고 있다. 이에 따라 기존의 정형화된 에너지 저장 장치를 넘어 전자기기 각각에 걸맞은 스펙과 기능을 갖는 맞춤형 전지 개발이 화두이다. 특히 구부러지거나 변형될 수 있는 웨어러블 전자기기를 구동하기 위해서는 기계적인 변형에 안정한 에너지 저장 장치가 필요하다. 또한 다양한 기능(투명성, 전기변색, 자가치유형, 친환경 등)을 갖는 지능형 전자기기가 개발됨에 따라, 이와 동등한 기능을 갖는 에너지 저장 장치도 요구되고 있다. 나아가 각각 개발된 웨어러블/다기능성 전자기기와 에너지 저장 장치를 어떻게 통합시킬지에 대한 연구도 활발히 이루어지고 있다. 본 기고문에서는 기계적 안정성, 기존 소자와의 적합성, 나아가 신기능성까지 갖춘 차세대 다기능성 웨어러블 에너지 저장 장치를 소개하고 이를 위한 복합나노구조 합성 및 소자 디자인 전략에 관한 최근 연구 동향을 소개하고자 한다.

Enhancing Mechanical and Electrical Performance through Polymer Blending: A Study on PVA-PDDA Blended Films for Triboelectric Energy Harvesting

  • Nebiyou Tadesse Debele;Alemtsehay Tesfay Reda;Yong Tae Park
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.139-142
    • /
    • 2024
  • This study explores the impact of polymer blending on the mechanical properties and triboelectric energy harvesting capability of composite polymers. A multifunctional free-standing polymer blend composed of poly(vinyl alcohol) (PVA) and poly(diallyldimethylammonium chloride) (PDDA) was fabricated using a polymer casting method. Stress-strain analysis of the polymer blend revealed an enhanced stretchability of 308.4% with excellent transparency. Furthermore, triboelectric analysis revealed dynamic energy harvesting capabilities with impressive electrical voltage and current output of 50 V and 5 μA. These results represent a significant improvement compared to individual PVA and PDDA polymers and highlight the potential of polymer blending to enhance both mechanical and electrical properties for energy harvesting applications.

Processing and properties of $Al_{2}O_{3}/SiC$ nanocomposites by polycarbosilane infiltration

  • Jung-Soo Ha;Chang-Sung Lim;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • $Al_{2}O_{3}/SiC$ nanocomposites were made by infiltrating partially sintered alumina bodies with polycarbosilane (PCS) solutions, which is a SiC polymer precursor, with pressureless sintering. The SiC content, densification, phases, strength, and microstructure were investigated with the processing parameters such as PCS solution concentration and heat treatment condition for PCS pyrolysis and sintering. The results were compared with those for pure alumina and nanocomposite samples made by the existing polymer precursor route (i.e. the PCS addition process). The SiC contents of up to 1.5 vol% were obtained by the PCS infiltration. PCS pyrolysis, followed by air heat treatment, was needed before sintering to avoid a cracking problem and to attain a densification as high as 98 % of theoretical. The nanocomposites exhibited significantly higher strength than pure alumina and those prepared by the PCS addition process despite larger grain size. Besides $\alpha-Al_{2}O_{3}/SiC$ and $\beta-SiC$ phases, mullite was present a little in the nanocomposites, which resulted from the reaction of $SiO_{2}$ in the pyrolysis product of PCS with the $Al_{2}O_{3}$ matrix during sintering. The nanocomposites had intagranular particles believed to be SiC, which is a typical feature of $Al_{2}O_{3}/SiC$ nanocomposites.

Hydrothermal Stability of Zirconia Ceramics (지르코니아 세라믹의 열수 상 안정성)

  • Lee, Deuk-Yong;Gogotsi, George A.;Kim, Dae-Joon;Park, No-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.190-193
    • /
    • 2002
  • 3mol% $Y_2O_3$ Partially-Stabilized Zirconia single Crystals (PSZCs) containing a small quantity (<0.5%) of rare-earth oxides ($CeO_2,\;Tb_2O_3$) were prepared by using a direct high-frequency skull melting technique to evaluate hydrothermal stability in an autoclave. Pole exhibited no $t{\rightarrow}m$ phase transformation during aging for 5h at temperatures from 150 to 250$^{\circ}C$ and 4MPa water vapor pressure in an autoclave, resulting in excellent hydrothermal stability.

Water Absorption Properties and Biodegradability of Lignin/PVA Nanofibrous Webs (리그닌/PVA 나노섬유 웹의 수분 특성 및 생분해성 평가)

  • Song, Youjung;Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.517-526
    • /
    • 2017
  • The biodegradation and water absorption properties of lignin/poly(vinyl alcohol) (PVA) nanofibrous webs are investigated. Lignin/PVA nanofibrous webs containing 0, 50, and 85wt% of lignin were prepared via an electrospinning process to observe the effect of the lignin concentration on the biodegradability and water absorption properties of lignin/PVA nanofibrous webs. The morphology of the materials was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). To understand the wetting behavior and hydrophilic nature of the electrospun lignin/PVA nanofibrous webs, the water absorbency, contact angle, and water uptake were examined. The enzymatic degradation of lignin/PVA nanofibrous webs was investigated using laccase by measuring total organic carbon (TOC) concentration over a course of 50 days. Water drops were absorbed immediately into all of the specimens. The water uptake of lignin/PVA nanofibrous webs increased as the amount of PVA in the lignin/PVA hybrid webs increased. The enzymatic degradation experiment indicated that the inherent biodegradability of lignin was retained after its transformation into nanofibers. Our findings imply that blending these two types of polymers is promising because it can lead to the development of a new range of multifunctional materials such as antimicrobial absorbent nanotextiles based on sustainable biopolymers.

Diversification and domain evolution of molluskan metallothioneins: a mini review

  • Nam, Yoon Kwon;Kim, Eun Jeong
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.8.1-8.18
    • /
    • 2017
  • Background: Metallothionein (MT) is a multifunctional protein playing important roles in homeostatic regulation and detoxification of metals. Mollusk species have been considered as useful sentinel platforms for MT-based biomarker approaches, and they have been reported to display an extraordinary structural diversity of MT proteins. However, potential diversity of molluskan MTs has not been fully explored and recent updates have suggested the need of revision of evolutionary hypothesis for molluskan MTs. Results: Based on bioinformatic analysis and phylogenetic evidences, novel divergence mechanisms and paths were hypothesized in both gastropod and bivalve MT groups. Our analyses are suggestive of the taxon- or lineage-specific domain multiplication/duplication from the ancestral or prototypic MT. Diversification and selection of molluskan MTs might be driven by the needs for acquiring metal selectiveness, specialized novel function, and improved capacity of metal detoxification under environmentally stressed conditions. Conclusion: The structural diversity and variations of molluskan MTs are significantly larger than previously understood. Undoubtedly, molluskan MTs have undergone dynamic divergent processes in their evolutionary histories, giving rise to the great diversity of domain structures in extant MT isoforms. Novel evolutionary paths for molluskan MTs newly proposed in this review could shed additional light onto the revision of the hypothesis for evolutionary differentiation of MTs in the molluskan lineage.

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization (페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략)

  • Hwang, Eunhye;Kwon, Tae-Hyuk
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.

Optical Properties and Structure of BaO-TiO2-SiO2 Glass Ceramics

  • Kim, Tae-Ho;Kim, Young-Suck;Jeong, Young-Joon;Na, Young-Hoon;Lim, Hwan-Hong;Cha, Myoung-Sick;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.821-826
    • /
    • 2008
  • Nanocrystallized glasses with the composition of $(50-x)BaO-xTiO_2-50SiO_2$ (x=10, 15, 16.7 and 20) have been prepared by heat-treatment at $T_x$ (crystallization onset temperature) for 3 h, and their optical properties, photoluminescence (PL), XRD and Raman spectra have been examined. The absorption edges of the glasses were red-shifted and the absorption coefficient increased with an increase of $TiO_2$. The glass subjected to the heat-treatment showed a dense formation of ${Ba_2}{TiSi_2}{O_8}$ crystals. The XRD and Raman results show that the nanocrystallized glasses formed fresnoite phase up to $TiO_2$ concentrations of 15 mol%. Further-more, blue luminescence with a peak at the wavelength of around 470nm was observed in the nanocrystallized glass, demon strating the optical multifunctional nanocrystallized material such as non-linear optics and photo-luminescence. It is thought that the blue luminescence from the ${Ba_2}{TiSi_2}{O_8}$ nanocrystallized glass originated from the presence of $Ti^{4+}$ incorporated into the fresnoite-type structure.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.