• Title/Summary/Keyword: multifunctional composite

Search Result 54, Processing Time 0.023 seconds

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

Earthquake Damage Assessment of Buildings Using Opendata in the Pohang and the Gyeongju Earthquakes (Opendata 기반 포항 및 경주지진에 의한 건물손상 평가)

  • Eem, Seung-Hyun;Yang, Beomjoo;Jeon, Haemin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.121-128
    • /
    • 2018
  • Severe earthquakes can cause damage to society both socially and economically. An appropriate initial response can alleviate damage from severe earthquakes. In order to formulate an appropriate initial response, it is necessary to identify damage situations in societies; however, it is difficult to grasp this information immediately after an earthquake event. In this study, an earthquake damage assessment methodology for buildings is proposed for estimating damage situations immediately after severe earthquakes. A response spectrum database is constructed to provide response spectra at arbitrary locations from earthquake measurements immediately after the event. The fragility curves are used to estimate the damage of the buildings. Earthquake damage assessment is performed from the response spectrum database at the building scale to provide enhanced damage condition information. Earthquake damage assessment for Gyeongju city and Pohang city were conducted using the proposed methodology, when an earthquake occurred on September 12, 2016, and November 15, 2017. Results confirm that the proposed earthquake damage assessment effectively represented the earthquake damage situation in the city to decide on an appropriate initial response by providing detailed information at the building scale.

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

Interlaminar Shear Strength of the Radar Absorbing Structure with Inserted Short Carbon Fiber Layers (단탄소 섬유층이 삽입된 전자파흡수구조의 층간전단강도에 관한 연구)

  • Jin, Do-Hyeon;Jang, Min-Su;Jang, Woo-Hyeok;Kim, Chun-Gon
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.13-17
    • /
    • 2022
  • RADAR Absorbing Structure (RAS), one of stealth technologies, is a multifunctional composite that is capable of supporting load and absorbing electromagnetic waves. In order to supplement the shortcomings of the existing RAS, a hybrid RAS in which the short carbon fiber layers were inserted has been proposed. However, the inserted short carbon fiber layers may affect the mechanical properties of the structure. Therefore, this study measured the interlaminar shear strength (ILSS) of the hybrid RAS with the inserted short carbon fiber layer. The ILSS of hybrid composite with different areal densities of the short carbon fiber layer was measured to investigate the effect of changes in the areal density of the short carbon fiber layer on the ILSS of the structure. In addition, the ILSS of the 4 kinds of the hybrid RAS were measured and compared with the ILSS of glass/epoxy. As a result of the measurement, it was confirmed that the short carbon fiber layer did not significantly affect the ILSS of the hybrid composite and the hybrid RAS.

Research on the Number of Households and Population Estimates of Administrative Composite City (행정복합도시의 인구수 및 유형별 가구수 추정에 대한 연구: 1단계 사업성과를 기반으로)

  • Nam, Young-Woo;Kwon, Chi-Hung;Kim, Jong-Lim;Kim, Yong-Soon
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.165-175
    • /
    • 2016
  • The Sejong Metropolitan Autonomous City is launched on July 1, 2012, and Phase 1 of the Multifunctional Administrative City Construction Project was completed in late 2015. Therefore, it is necessary through the results of the first phase of the project to check whether Sejong city can achieve the target population and number of households by 2030 and to use to determine the number and type of housing to be supplied next. Based on the presented results of the Phase 1 project period, this study estimate the population and number of households in 2030. For forecasting future population the population growth rate seen in the future of Sejong City's population forecast published by the National Statistical Office and the performance against plans Step 1 were used for forecasting future population. The results of analysis showed that the Multi-functional Administrative City is difficult to attract five hundred thousand people and two hundred thousand houses. In the analysis of households by type The Multi-functional Administrative City is The large proportion of 3-4 person households and high-income earners and Homeowners. But it increased the proportion of households with 1-2 people and rent house of the city grows in size and it is likely to change the level of income. Therefore, it is determined that there is a need to reflect these elements in next housing.

PTCR Characteristics of Multifunctional Polymeric Nano Composites (PTCR 나노 복합기능 소재의 전류 차단 특성 연구)

  • 김재철;박기헌;서수정;이영관;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.367-374
    • /
    • 2002
  • Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.

Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element (응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사)

  • Jang, Jinhyeok;Sung, Minchang;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 2016
  • Metal and polymer sandwich composites, which are made of sheet metal sheath and polymer or fiber reinforced plastic core, have been reconsidered as an alternative to sheet metal due to their lightness and multifunctional properties such as damping and sound-proof properties. For the successful applications of these composites, the delamination prediction based on the adhesion strength is important element. In this study, the numerical simulation of the delamination behavior of polymeric adhesive tapes with metallic surfaces was performed using cohesive zone elements and finite element software. The traction-separation law of the cohesive zone element was defined using the fracture energy derived from peel mechanics and experimental results from peel test and implemented in finite element software. The peel test of the polymeric adhesive film against steel surface was simulated and compared with experiments, demonstrating reasonable agreement between simulation and experiment.

Enhancement of Electrochemical and Mechanical Properties of 3D Graphene Nanostructures by Dopamine-coating (도파민 코팅을 이용한 3차원 그래핀 나노 구조체의 전기화학적/기계적 특성 향상 연구)

  • Lee, Guk Hwan;Luan, Van Hoang;Han, Jong Hun;Kang, Hyun Wook;Lee, Wonoh
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.388-394
    • /
    • 2019
  • Inherited the excellent electrical and mechanical properties based on the low dimensional structure of graphene, three-dimensional graphene nanostructures have gathered great attention as electrochemical energy storage electrodes owing to their high porosity and large specific surface area. Also, having the catecholamine structure, dopamine has been regarded as a multifunctional material to possess high affinity to various organic/inorganic materials and to modify a hydrophobic surface to a hydrophilic one. In this work, through coating dopamine on the three-dimensional graphene nanostructure, we tried to increase the specific capacitance by enhancing the wettability with electrolyte and to improve the mechanical compressive property by strengthening the nano-architecture. As a result, the dopamine-coated nanostructure exhibited significant improvement on the specific capacitance (51.5% increase) and compressive stress (59.6% increase).

The Effect of Electrolyte-coating on the Mechanical Performance of Carbon Fabric for Multifunctional Structural Batteries (다기능성 구조전지용 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과)

  • Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.285-290
    • /
    • 2015
  • Multiscale multiphysics in structural batteries make mechanical property testing difficult. In this research, the effect of electrolyte-coating on the mechanical performance of carbon fabric was studied using a suitable mechanical test method for structural batteries. For this experiment, two types of specimens were determined their dimension according to ASTM. One type of specimen was smaller than the standard dimension. The specimens were coated by spreading the electrolyte material on carbon fabric, hardened using epoxy, and tested for tensile properties using universal testing machine. As a result, it was found that the mechanical properties of carbon fabric were not influenced by electrolyte coating. In addition, the small-scale specimen used in this experiment was determined to be sufficiently reliable.