• 제목/요약/키워드: multidrug-resistant bacteria

검색결과 103건 처리시간 0.021초

다제내성(多劑耐性)을 지닌 균주에 감염된 상처에서 Nanocrystalline Silver(Acticoat®) 드레싱의 효용 (Effectiveness of Nanocrystalline Silver(Acticoat®) Dressing at Wound Infected by Multidrug Resistant Bacteria)

  • 정태광;양호직
    • Archives of Plastic Surgery
    • /
    • 제34권6호
    • /
    • pp.691-696
    • /
    • 2007
  • Purpose: The emergency of multi-drug resistant stains of bacteria represents a challenge in the field of plastic surgery. Especially, MRSA(methycillin-resistant Staphylococcus aureus) and Pseudomonas aeruginosa have strong pathogenicity as well as multi-drug resistance so that they have become a lot more problematic strains. This study has been planned to reduce the bacterial burden by applying $Acticoat^{(R)}$(Smith & Nephew Healthcare, Hull, England)dressing into the chronic wounds infected by multi-drug resistant strains and to facilitate their healing. Methods: Nanocrystalline silver dressings($Acticoat^{(R)}$) were applied to chronic wound infected by MRSA or Pseudomonas aeruginosa. Multi-drug resistant bacteria were smeared over a slide glass using sterilized cotton swabs and gram stains were performed directly before and after applying $Acticoat^{(R)}$ dressings at 1, 24, 48 and 72 hours. The gram-stained slides were observed using an optical microscope magnified 1000 times(${\times}1000$). The bacterial counts of the control group(0 hour) were compared to those of the experimental groups(1, 24, 48, and 72 hour). Paired T-test was used to assess a statistical significance. MRSA was cultured in two BAPs(blood agar plate) and two MacConkey plates with streak plate method. None were interventions on one culture plate, while on the other culture plate, $Acticoat^{(R)}$ was placed in a square shape and cultured for 72 hours at $37^{\circ}C$, then plates were examined. Pseudomonas aeruginosa was cultured in the same manner as MRSA. Results: There are the large amount of declination of bacterial counts with statistical significance after $Acticoat^{(R)}$ dressing. The bacteria grew in culture plate without specific intervention, but no bacteria grew in culture plate with applying of $Acticoat^{(R)}$ dressing. Conclusion: We believe that $Acticoat^{(R)}$ dressing could be used as an effective method of treating chronic wounds which are infected by multi-drug resistant organisms.

Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts

  • Anchalee Rawangkan;Atchariya Yosboonruang;Anong Kiddee;Achiraya Siriphap;Grissana Pook-In;Ratsada Praphasawat;Surasak Saokaew;Acharaporn Duangjai
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1179-1188
    • /
    • 2023
  • Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.

시판 정유의 성분 분석과 다약제 내성균에 대한 항균활성 및 항산화 효능 평가 (Chemical Composition and in vitro Antimicrobial and Antioxidant Activities of Commercially Available Essential Oils against Multidrug Resistant Bacteria)

  • 유영월;이효정;김승;배민석;이미자;심정현;조승식
    • 생명과학회지
    • /
    • 제24권3호
    • /
    • pp.266-273
    • /
    • 2014
  • 본 연구에서는 국내 시판 중인 정유의 화학적 구성, 항균 및 항산화 효과를 조사하였다. 정유의 성분 분석은 GC-MS법을 이용하였다. 정유는 그람음성, 양성 및 다약제 내성균에 대하여 광범위한 항균 범위를 보여주었다. 정유 5종의 항균활성은 40개 병원성 세균에 대한 MIC로 측정하였다. Lemongrass와 manuka는 0.0625-0.5% (v/w), tea tree는 0.03125-1.0% (v/w), thyme 0.0625-1.0% (v/w) 및 ravensara는 1-4% (v/w)의 MIC 수치를 나타내었다. 정유의 항산화 활성은 환원력 및 DPPH법으로 평가하였다. 5종의 정유 모두 농도 의존적으로 DPPH free radical 저해 및 환원력을 가지고 있었으며, thyme이 대조군인 ascorbic acid와 비교 시 가장 높은 항 산화능을 보였다. 5종의 정유 모두 고른 항균 및 항산화능을 가지고 있으며, 이중 thyme이 가장 높은 항균활성 및 항산화능을 가지고 있어 천연 항균 항산화제로써의 가치가 있다고 생각되었다. 본 연구진은 국내 시판중인 정유 5종의 성분분석, 항균 및 항산화 활성을 처음으로 비교 분석하여 보고하였다.

Trends in the use of antibiotics among Korean children

  • Choe, Young June;Shin, Ju-Young
    • Clinical and Experimental Pediatrics
    • /
    • 제62권4호
    • /
    • pp.113-118
    • /
    • 2019
  • Inappropriate antibiotic use is the most important factor causing increased bacterial resistance to antibiotics, thus affecting patient outcomes. Multidrug-resistant bacteria have become a serious public health threat, causing significant morbidity and mortality worldwide. In Korea, the burden of antibiotic-resistant bacteria has become an important public health issue. There is increasing evidence of overuse and misuse of antibiotics in Korea, as observed in cohorts with large sample sizes. Antibiotic use among children should receive particular attention because of the frequency of community-associated infections among this population and the elevated risk of transmission. Recent studies from Korea have demonstrated that the use of broad-spectrum antibiotics, either for inpatient or outpatient treatment, has increased among many age groups, especially children. In this review, we aim to describe the patterns of antibiotic prescription and evaluate recent trends in antibiotic use among children. Coordinated efforts toward communication and education in order to address misunderstandings regarding antibiotic use, involving interprofessional antimicrobial stewardship programs, are required in the near future.

광주지역 공공수역의 미생물 군집 다양성 및 항생제 내성에 관한 연구 (A Study on Microbial Community Diversity and Antibiotic Resistance in Public Waters in Gwangju)

  • 김선정;박지영;김승호;임민화;유지용;한규성;박세일;서광엽;조광운
    • 한국환경보건학회지
    • /
    • 제50권2호
    • /
    • pp.93-101
    • /
    • 2024
  • Background: As pollutants caused by non-point sources flow into rivers, river water quality monitoring for fecal pollution is becoming increasingly important. Objectives: This study was conducted to investigate the distribution of microbial communities in the Yeongsangang River water system and sewage treatment plants in Gwangju and to evaluate their antibiotic resistance. Methods: In the experiment, samples were distributed to five selective media at each point and then cultured for 18 to 24 hours. When bacteria were observed, they were sub-cultured by size and shape and identified using MALDI-TOF MS equipment. When identification was completed, 17 types of antibiotic susceptibility tests were performed using VITEK II equipment, focusing on gram-negative dominant species among the identified strains. Results: During the study period, a total of 266 strains were isolated from 39 samples. Gram-positive bacteria were 37 strains in four genera, or 13.9% of the total, and Gram-negative bacteria were 229 strains in 23 genera, or 86.1% of the total. Antibiotic susceptibility testing of 23 strains, the major dominant species, showed that one strain (4.3%) was resistant to only one antibiotic, and two strains (8.7%) were 100% susceptible to the 17 antibiotics tested. The other 20 strains (87.0%) were multidrug resistant bacteria resistant to two or more antibiotics. There were various types of multidrug resistance. Among them, penicillin and cephalosporin series showed the highest resistance. Conclusions: Based on the results of this study, it was found that the bacterial community structure changed according to regional and environmental factors, and it was judged that continuous research such as genetic analysis of antibiotic-resistant bacteria present in natural rivers is necessary.

금속표면이 항생제 내성균주의 생육억제에 미치는 영향 (Inhibitory Effect of Metal Surface on the Antimicrobial Resistance Microorganism)

  • 김중범;김재광;김현정;조은정;박연준;이혜경
    • Annals of Clinical Microbiology
    • /
    • 제21권4호
    • /
    • pp.80-85
    • /
    • 2018
  • 배경: 본 연구는 국내 병원에서 분리된 methicillin 내성 Staphylococcus aureus (MRSA), vancomycin 내성 Enterococcus faecium (VREFM) 및 다제 내성 multidrug-resistant Pseudomonas aeruginosa (MRPA) 등에 대한 구리, 유기(구리 78%, 주석 22%), stainless steel의 살균력을 비교 실험하여, 국내 병원 환경에 의한 항생제 내성 균주 교차 감염을 예방하는 데 구리와 유기의 활용성을 분석하고자 하였다. 방법: MRSA, VREFM, MRPA 균주는 2017년 의정부성모병원에서 분리 동정된 wild type 3균주씩을 혼합하여 사용하였으며 모두 항생제 다제 내성 균주로 나타났다. MRSA, VREFM, MRPA 균주 각각을 Tryptic soy broth (Oxoid, England)에 접종하여 $35^{\circ}C$에서 24시간 배양한 후, 각각 초기 접종균액의 균수를 $10^5\;log\;CFU/mL$로 조정하였다. 구리, 유기, stainless steel 용기에 준비된 MRSA, VREFM, MRPA 접종균액 100 mL씩을 각각 접종한 후, 습도가 유지되도록 덮개를 덮은 후 $35^{\circ}C$ incubator에서 초기부터 9일까지 생존균수를 측정하였다. 결과: 본 연구결과 국내에서 분리된 항생제 다제 내성 MRSA, VREFM, MRPA 균주에 대한 구리 및 유기의 살균효과를 확인하였다. Stainless steel의 살균력은 구리 및 유기에 비해 매우 미약하였고, MRSA 및 VREFM에 비해 MRPA의 살균효과가 크게 나타났다. 결론: 교차감염을 예방하기 위하여 병원 내 문손잡이, 수도꼭지, 침대레일 등에 구리나 유기를 적용하여, 장기간 실험을 진행하고 있는 국외 사례와 같이, 국내 병원에서도 구리와 유기를 이용한 병원 내 교차 감염 예방 연구가 필요하다고 생각한다.

Growth Inhibition Profile of an Antibacterial Entity from Paenibacillus DY1 Isolated from Korean Soil against Multidrug Resistant Enteric Bacterial Strains and Its Characterization

  • ;;유관희
    • 대한의생명과학회지
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 2007
  • Due to wide abuse of antibiotics both in human and livestock use, the advent and spread of multidrug resistant (MDR) pathogens becomes a serious health problem all over the world. Since the development of new antibiotics is at a standstill in pharmaceutical industry, the choice of therapeutic antibiotics is getting narrower. In this study, in an effort to search new antibiotics, the antimicrobial activity of Paenibacillus DY1 isolated from Korean soil was characterized on its growth inhibition spectrum against various health threatening MDR strains, with its stability and chemical structure. Extracellular culture filtrate of Paenibacillus DY1 effectively inhibits the growth of all the tested MDR enteropathogenic Eshcherichia coli, enterohemolytic E. coli, and enterotoxigenic E. coli strains, at a similar level to that on the nonresistant control E. coli strains. It showed significant growth inhibition effect against the causative agents of class one legal communicable disease, MDR Salmonella typhi, MDR Salmonella paratyphi A, food poisoning bacteria, MDR Salmonella typhimurium, and other MDR Salmonella spp. The growth of all of 10 different MDR Shigella spp. strains and 6 different Vibrio spp. strains tested was also inhibited. The antimicrobial activity of Paenibacillus DY1 was well preserved after heat treatment, and was also stable in both alkaline and acidic environment. The antimicrobial activity was partially purified with Diaion HP20 column and TLC. By NMR study, the putative structure of the activity was postulated as an alkane having hydroxyl groups.

  • PDF

Effects of C-Terminal Residues of 12-Mer Peptides on Antibacterial Efficacy and Mechanism

  • Son, Kkabi;Kim, Jieun;Jang, Mihee;Chauhan, Anil Kumar;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1707-1716
    • /
    • 2019
  • The development of new antimicrobial agents is essential for the effective treatment of diseases such as sepsis. We previously developed a new short peptide, Pap12-6, using the 12 N-terminal residues of papiliocin, which showed potent and effective antimicrobial activity against multidrug-resistant Gram-negative bacteria. Here, we investigated the antimicrobial mechanism of Pap12-6 and a newly designed peptide, Pap12-7, in which the 12th Trp residue of Pap12-6 was replaced with Val to develop a potent peptide with high bacterial selectivity and a different antibacterial mechanism. Both peptides showed high antimicrobial activity against Gram-negative bacteria, including multidrug-resistant Gram-negative bacteria. In addition, the two peptides showed similar anti-inflammatory activity against lipopolysaccharide-stimulated RAW 264.7 cells, but Pap12-7 showed very low toxicities against sheep red blood cells and mammalian cells compared to that showed by Pap12-6. A calcein dye leakage assay, membrane depolarization, and confocal microscopy observations revealed that the two peptides with one single amino acid change have different mechanisms of antibacterial action: Pap12-6 directly targets the bacterial cell membrane, whereas Pap12-7 appears to penetrate the bacterial cell membrane and exert its activities in the cell. The therapeutic efficacy of Pap12-7 was further examined in a mouse model of sepsis, which increased the survival rate of septic mice. For the first time, we showed that both peptides showed anti-septic activity by reducing the infiltration of neutrophils and the production of inflammatory factors. Overall, these results indicate Pap12-7 as a novel non-toxic peptide with potent antibacterial and anti-septic activities via penetrating the cell membrane.

Prevalence and Molecular Characterization of ESBL Producing Enterobacteriaceae from Highly Polluted Stretch of River Yamuna, India

  • Siddiqui, Kehkashan;Mondal, Aftab Hossain;Siddiqui, Mohammad Tahir;Azam, Mudsser;Haq., Qazi Mohd. Rizwanul
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.135-144
    • /
    • 2018
  • The rapid increase in number and diversity of Extended Spectrum ${\beta}$-Lactamases (ESBLs) producing Enterobacteriaceae in natural aquatic environment is a major health concern worldwide. This study investigates abundance and distribution of ESBL producing multidrug resistant Enterobacteriaceae and molecular characterization of ESBL genes among isolates from highly polluted stretch of river Yamuna, India. Water samples were collected from ten different sites distributed across Delhi stretch of river Yamuna, during 2014-15. A total of 506 non duplicate Enterobacteriaceae isolates were obtained. Phenotypic detection of ESBL production and antibiotic sensitivity for 15 different antibiotics were performed according to CLSI guidelines (Clinical and Laboratory Standard Institute, 2015). A subset of ESBL positive Enterobacteriaceae isolates were identified by 16S rRNA gene and screened for ESBL genes, such as $bla_{CTX-M}$, $bla_{TEM}$ and $bla_{OXA}$. Out of 506 non-duplicate bacterial isolates obtained, 175 (34.58%) were positive for ESBL production. Susceptibility pattern for fifteen antibiotics used in this study revealed higher resistance to cefazolin, rifampicin and ampicillin. A high proportion (76.57%) of ESBL positive isolates showed multidrug resistance phenotype, with MAR index of 0.39 at Buddha Vihar and Old Delhi Railway bridge sampling site. Identification and PCR based characterization of ESBL genes revealed the prevalence of $bla_{CTX-M}$ and $bla_{TEM}$ genes to be 88.33% and 61.66%, respectively. Co-occurrence of $bla_{CTX-M}$ and $bla_{TEM}$ genes was detected in 58.33% of the resistant bacteria. The $bla_{OXA}$ gene was not detected in any isolates. This study highlights deteriorating condition of urban aquatic environment due to rising level of ESBL producing Enterobacteriaceae with multidrug resistance phenotype.

Whole genome sequencing analysis on antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia

  • Hadri Latif;Debby Fadhilah Pazra;Chaerul Basri;I Wayan Teguh Wibawan;Puji Rahayu
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.44.1-44.13
    • /
    • 2024
  • Importance: The emergence and rapid increase in the incidence of multidrug-resistant (MDR) bacteria in pig farms has become a serious concern and reduced the choice of effective antibiotics. Objective: This study analyzed the phylogenetics and diversity of antibiotic resistance genes (ARGs) and molecularly identified the source of ARGs in antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia. Methods: Forty-four antibiotic-resistant E. coli isolates from fecal samples from 44 pig farms in Banten Province, Indonesia, were used as samples. The samples were categorized into 14 clusters. Sequencing was performed using the Oxford Nanopore Technologies MinION platform, with barcoding before sequencing with Nanopore Rapid sequencing gDNA-barcoding (SQK-RBK110.96) according to manufacturing procedures. ARG detection was conducted using ResFinder, and the plasmid replicon was determined using PlasmidFinder. Results: Three phylogenetic leaves of E. coli were identified in the pig farming cluster in Banten Province. The E. coli isolates exhibited potential resistance to nine classes of antibiotics. Fifty-one ARGs were identified across all isolates, with each cluster carrying a minimum of 10 ARGs. The ant(3'')-Ia and qnrS1 genes were present in all isolates. ARGs in the E. coli pig farming cluster originated mainly from plasmids, accounting for an average of 89.4%. Conclusions and Relevance: The elevated potential for MDR events, coupled with the dominance of ARGs originating from plasmids, increases the risk of ARG spread among bacterial populations in animals, humans, and the environment.