사용자 중심의 메뉴 기반 인터페이스를 설계하기 위해서는 인간의 지식 구조를 이해하는 것이 중요하다. 인간의 지식 구조를 이해하게 되면, 인터페이스를 통해서 전달된 자극들이 만들어낸 개념들이 어떠한 관계를 가지고 정신 모형(mental model)을 형성하고 있는지 알 수 있다. 인간의 지식 구조는 MDS (Multidimensional Scaling)과 Trajectory Mapping을 이용하여 Visual Concept Map 으로 나타낼 수 있고, 이것을 바탕으로 인간의 지식구조를 시각적으로 이해할 수 있다. MDS 는 인간의 머릿속에 자리잡고 있는 개념들의 상대적 위치를 알려주고, Trajectory Mapping 은 개념들 간의 연결 상태를 보여준다. 즉, Trajectory Mapping 을 통하여 개념들 간악 인지적 정보를 알 수 있다. 본 연구에서는 MDS 와 Trajectory Mapping 을 이용하여 핸드폰 메뉴로부터 전달 받은 시각적 자극들에 악해 형성된 개념들에 대한 인간의 지식 구조를 Visual Concept Map 으로 시각화하였다. 그리고 이렇게 시각화된 지식 구조를 바탕으로 메뉴 구조를 개발하였다. 본 연구 결과, MDS 와 Trajectory Mapping 을 이용한 인간의 지식 구조의 시각화는 사용자 중심의 메뉴 기반 인터페이스를 설계하는데 유용하게 쓰일 수 있을 것으로 보인다.
일반적으로 그룹화된 다변량자료는 다변량 분산분석(multivariate analysis of variance; MANOVA)을 사용하여 그룹 간 차이를 검정할 수 있다. 그러나 만약 다변량 분산분석의 기본적인 가정이 위배되면 이 방법은 적절하지 못하다. 이 경우 다양한 거리로부터 그룹화된 비유사성을 계산한 후 다차원척도법(multidimensional scaling; MDS), 거리분석(analysis of distance; AOD) 그리고 비모수적 기법인 순열검정(permutation test)을 적용하여 문제를 해결할 수 있다. 다차원척도법은 비유사성으로부터 개체들의 좌표를 계산해주며 거리분석은 이 좌표를 활용하여 그룹구조를 파악하는데 유용하다. 특히 비유사성의 측도로 유클리드 거리를 사용하면 거리분석은 다변량 분산분석과 수리적으로 매우 밀접한 연관관계를 맺는다. 따라서 본 연구에서는 그룹화된 비유사성에 다차원척도법과 거리분석을 적용하여 그룹 내와 그룹 간의 구조를 파악하고 순열검정을 위한 새로운 검정통계량을 제안하려 한다. 덧붙여 유클리드 거리를 활용한 비유사성을 통해 거리분석과 다변량 분산분석과의 수리적 연관성을 고찰하고자 한다.
비계량 다차원 척도법은 개체들 간의 비유사성이 비계량으로 주어져 개체들 간의 거리 개념을 설정하기 어려운 경우에 개체들을 유클리드 공간 상으로 사상하여 개체 간의 관련성을 연구하는 방법으로 지역 최적치가 많은 최적화 문제로 간주할 수 있다. 비계량 다차원 척도법을 위한 기존의 알고리즘은 최대 경사법을 사용함으로 일단 지역 최적치에 도달하면 더 이상 향상된 해를 찾기 어렵다는 단점이 있다. 이러한 단점을 해결하기 위하여 본 논문에서는 담금질 방법을 비계량 다차원 척도법에 접목하여 지역 최적치에 빠지지 않고 전역 최적치를 효율적으로 찾을 수 있는 새로운 비계량 다차원 척도법 알고리즘을 제안하였다. 제안한 알고리즘을 벤치마킹 문제에 적용하고 실험을 통하여 기존 알고리즘과 비교 분석한 결과, 제안한 알고리즘은 기존 알고리즘 대비 0.7%에서 3.2%의 향상률을 보였다. 또한 통계적 가설 검정을 통하여 제안한 알고리즘의 우수성을 입증하였다.
This paper presents a multi-robot localization based on Bayesian Multidimensional Scaling (BMDS). We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr${\ddot{o}}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).
Rapid economic development in Korea caused functions of city functions such as concentration of population, deterioration of the quality of living environment and traffic congestion. Korean cities have lost their identity becausr they are merged functionally and physically with neighboring cities, forming one mesa-city. Unified shape and disorganized streets of cities often cause confusion among foreigners and visitors. It is very difficult for them to find their image in strange cities. It is, however, important to correctly analyze the image and meaning of cities for understanding its identity. The purpose of this study is to develop a method to analyze the city image by focusing on some of the main cities in Korea. For this purpose, the adjective questionnaire and multi-dimension scaling (MDS) are applied to the analysis of city image. Image analysis graph by MDS can visually present the general and integrate images. The results of this study are summarized as follows: The important factors for interpretation of city image are historical and industrial character. Seoul, Taegu and Pusan have industrial and complex city images. Kongju has historical city image, while Changwon has a modern image. Chuncheon belongs to a soft and small image. Each city has an alternative solution against a negative image, according to the image analysis graph.
다차원척도법(multidimensional scaling)이란 개체간의 비유사성을 저차원 공간에 기하적으로 나타내려는 다변량 분석의 그래프적 기법이다. 일반적으로 다차원척도법은 계량형 다차원척도법과 비계량형 다차원척도법으로 분류할 수 있는데, 계량형 다차원척도법은 양적자료에 적용하게 된다. 그러나 이를 통해서는 개체들에 대한 군집화 정보만을 파악할 수 있으며, 개별 군집의 특징을 파악하기 위해서는 가상점(pseudo-points)을 활용한 변수들의 정보에 대한 추가적인 표현이 요구된다. 이러한 이유로 Gower (1992)는 연속형 변수에 대한 가상점들의 궤적을 표현함으로서 계량형 다차원척도법의 공간 상에 변수 정보를 나타내는 '대체법(replacement method)'을 제안한 바 있다. 그러나 이진수 자료는 계량형 다차원척도법을 적용할 수 있음에도 불구하고 대체법을 적용하면 가상점의 궤적을 표현할 수 없다. 따라서 본 연구에서는 이진수 자료에 대한 다차원척도법의 공간 상에 가상점을 이용하여 변수 정보를 표현하는 '분할법(partition method)'을 제안하려한다. 분할법은 0과 1의 비율을 모두 고려하여 가상점을 결정한다. 따라서 분할법에 의한 가상점을 활용한 계량형 다차원척도법을 통해 이진수 자료에서 변수와 개체간의 관계를 파악할 수 있게 해준다.
Persistence homology (a type of methodology in computational algebraic topology) can be used to capture the topological characteristics of functional data. To visualize the characteristics, a persistence diagram is adopted by plotting baseline and the pairs that consist of local minimum and local maximum. We use the bottleneck distance to measure the topological distance between two different functions; in addition, this distance can be applied to multidimensional scaling(MDS) that visualizes the imaginary position based on the distance between functions. In this study, we use handwriting data (which has functional forms) to get persistence diagram and check differences between the observations by using bottleneck distance and the MDS.
다변량 자료에서 특이점을 검출하고, 검출된 특이점을 시각화와 연결한 R 스크립트를 제공한다. 개발된 R 스크립트는 특이점을 검출하는 방법으로서 1) Robust Mahalanobis distance, 2) High Dimensional data, 3) Density-based approach 방법을 이용하였다. 특이점을 연결하면서 데이터 구조를 파악하기 위한 시각화 방법으로는 1) multidimensional scaling (MDS)와 minimal spanning tree (MST)를 K-means 군집분석과 연결하여 표시하는 방법, 2) MDS를 fviz cluster와 연결하는 방법, 3) principal component analysis (PCA)를 fviz cluster와 연결한 방법을 이용하였다. 사례분석의 예로서는 Major League Baseball (MLB) 자료에서 류현진이 적극적으로 활동하던 2013년, 2014년 투수자료를 이용하였다. 개발된 R 스트립트는 "http://www.knou.ac.kr/~sskim/ddpoutlier.html (R 스크립트와 R 패키지도 다운로드 받을 수 있다. 실행방법도 설명되어 있다.)"에서 다운받으면 된다.
다차원척도법은 개체간의 비유사성을 저차원 공간에 기하적으로 표현하기 위한 다변량 자료의 탐색적 분석기법이다. 그러나 일반적인 다차원척도그림에서는 개체들의 유사성 정보만이 표현될 뿐 변수와 관련된 정보가 나타나지 않기 때문에 그림의 해석 상에 한계점이 존재한다. 본 연구에서는 범주형 자료를 다중표시행렬로 변환하고 Torgerson (1958)의 알고리즘에 의한 다차원척도법을 적용하여 개체들의 군집화 성향과 군집들의 상대적 크기를 다차원척도그림으로 시각화하였다. 그리고 Shin 등 (2015)의 분할법을 적용하여 범주형변수의 범주수준별 정보를 다차원척도그림 상에 투영하여 추가적인 정보를 표현하였다. 따라서 본 연구에서 제안하고자 하는 다차원척도그림을 이용하면 개체들의 유사성 정보와 함께 범주형변수들 사이의 연관성도 탐색할 수 있는 장점이 있다.
Yun, Suk Min;Lee, Sang Deuk;Park, Joon Sang;Lee, Jin Hwan
ALGAE
/
제31권1호
/
pp.1-16
/
2016
Paralia species have been frequently reported as P. sulcata in Korea, despite the species diversity within the genus. To understand the species diversity of Paralia in Korea, we collected phytoplankton samples at 79 sites from April 2006 to April 2015. Five Paralia species, P. fenestrata, P. guyana, P. marina, P. cf. obscura, and P. sulcata, were observed during this study, and we described their fine structure in terms of quantitative and qualitative morphological characteristics. To provide additional criteria to identify Paralia species more clearly, we morphometrically analysed four quantitative characteristics on valve diameter: pervalvar axis / diameter, internal linking spines / diameter, marginal linking spines / diameter, and fenestrae/diameter using non-metric multidimensional scaling (MDS). MDS analysis distinguished four Paralia species: P. guyana, P. marina, P. cf. obscura, and P. sulcata, with the exception of P. fenestrata. This new approach in using morphometric analysis is useful for the accurate identification of Paralia species.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.