• Title/Summary/Keyword: multicarrier modulation

Search Result 46, Processing Time 0.02 seconds

Doppler Frequency Estimation Robust to Synchronization Error and Noise in FMT Systems (FMT 시스템에서 동기 오차와 잡음에 강인한 도플러 주파수 추정 기법)

  • Yeom, Jae-Heung;Jo, Yeong-Hun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.572-579
    • /
    • 2010
  • Filtered multi-tone (FMT) is a form of multicarrier modulation utilizing frequency-domain equalization efficient in multi-path fading channels. Doppler frequency information can be employed for channel estimation and link adaptation to improve the performance. However, most previous studies have concentrated on the orthogonal frequency division multiplexing (OFDM) instead of FMT. Moreover, they have not considered the synchronization error that can commonly occur in practical systems. In this paper, we propose Doppler frequency estimation scheme that is effective in FMT systems with residual synchronization error and high noise levels.

A Parallel Combinatory OFDM System with Weighted Phase Subcarriers

  • Zheng, Hui;Shrestha, Robin;Hwang, Jae-Ho;Kim, Jae-Mong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.322-340
    • /
    • 2012
  • Orthogonal Frequency Division Multiplexing (OFDM) is usually regarded as a spectral efficient multicarrier modulation technique, yet it suffers from a high peak-to-average power ratio (PAPR) problem. Among all the existing PAPR reduction techniques in OFDM systems, side information based PAPR reduction techniques such as partial transmit sequence (PTS) and selective mapping (SLM) schemes, have attracted the most attention. However, the transmission of side information results in somewhat spectral loss and this does not significantly improve the bit error rate (BER) performance. Parallel combinatory (PC) OFDM yields higher spectral efficiency (SE) and better BER performance on Gaussian channels,while is a little but not obvious PAPR improvement over the ordinary OFDM system. This investigation aimed to design a 'perfect' OFDM system. We introduce the side information to rotate the subcarrier phases of our novel PC-OFDM system structure, and call this new system the SIPC(Side information based Parallel Combinatory)-OFDM system. The proposed system achieves better PAPR and SE performance. In addition, considering the tradeoff of system parameters, the proposed system also has the properties of a higher BER.

Application of antenna array to FBMC/OQAM system in frequency-selective signal environment (주파수 선택적 신호 환경에서 안테나 어레이의 FBMC/OQAM 시스템 적용)

  • Kim, Yekaterina;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • Despite attractive advantages such as good time-frequency localization and improved spectral efficiency, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) suffers from multipath fading. In highly frequency-selective channels, the effect of multipath interference can significantly distort the FBMC/OQAM signal due to the absence of cyclic prefix. To resolve the problem of the multipath interference in FBMC/OQAM, this paper proposes applying an antenna array that provides well shaped beam pattern for each multipath. To evaluate the performance of the proposed array system, various computer simulations have been conducted. The accuracy of direction of arrival estimation is demonstrated through spatial spectrum for a different number of antennas in a sub-array. The performance improvement is presented in terms of bit error rate. We found that the proposed array system mitigate the multipath interferences in Extended Typical Urban model with 12 antennas in a sub-array. Moreover, as the number of antennas in a sub-array increases, the system provides a signal-to-noise ratio gain.

A Power Control for OFDM Transmission Scheme in a Cochannel Interference Environment (동일 채널 간섭 환경에서 OFDM 전송 방식을 위한 송신 전력 제어)

  • Park, Jin-Kyu;Lim, Chang-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.271-280
    • /
    • 2007
  • This paper presents a power control scheme for OFDM based wireless communication systems in a multicell environment with co-channel interference which enables each system to achieve its target level of transmission bit rate. Generally, the optimal or near optimal power control scheme for multicarrier systems is Down to control the power level of each subcarrier in accordance with the associated channel status, which may be found in WF(waterfilling) and WF(iterative waterfilling) schemes. However, this requires the channel state information associated with every subchannel to be fed back from the receiver to its transmitter for successful power control. If the wireless channel exhibits relatively fast fading or the number of subcarriers is large, this may result in a considerable overhead. Here, in order to alleviate this problem, we propose a power control strategy for an OFDM systems maintaining the same power level over all the subcarriers. Also we prove its convergence, compare its complexity with that of the existing IWF algorithm, and examine its convergence characteristic through computer simulations.

A SCPWL Model-Based Digital Predistorter for Nonlinear High Power Amplifier Linearization (비선형 고출력 증폭기의 선형화를 위한 SCPWL 모텔 기반의 디지털 사전왜곡기)

  • Seo, Man-Jung;Jeon, Seok-Hun;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.8-16
    • /
    • 2010
  • An orthogonal frequency division multiplexing (OFDM) system is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems the distortion introduced by high power amplifiers (HPA's) such as traveling wave tube amplifier (TWTA) considered in this paper, is also critical. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a simplicial canonical piecewise-linear (SCPWL) model based digital predistorter to compensate for nonlinear distortion introduced by an HPA in an OFDM system. Computer simulation is carried on an OFDM system under additive white Gaussian noise (AWGN) channels with 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT. The simulation results demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the HPA.

A Canonical Piecewise-Linear Model-Based Digital Predistorter for Power Amplifier Linearization (전력 증폭기의 선형화를 위한 Canonical Piecewise-Linear 모델 기반의 디지털 사전왜곡기)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin;Hong, Seung-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Recently, there has been much interest in orthogonal frequency division multiplexing (OFDM) for next generation wireless wideband communication systems. OFDM is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems it is also important to distortion introduced by high power amplifiers (HPA's) such as solid state power amplifier (SSPA) considered in this paper. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a canonical piecewise-linear (PWL) model based digital predistorter to prevent signal distortion and spectral re-growth due to the high peak-to-average power ratio (PAPR) of OFDM signal and the nonlinearity of HPA's. Computer simulation on an OFDM system under additive white Gaussian noise (AWGN) channels with QPSK, 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT, demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the SSPA.