• Title/Summary/Keyword: multibody systems

검색결과 130건 처리시간 0.029초

탄성 다물체계에 대한 조인트좌표 공간에서의 역동역학 해석 (Inverse Dynamic Analysis of Flexible Multibody System in the Joint Coordinate Space)

  • 이병훈
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.352-360
    • /
    • 1997
  • An inverse dynamic procedure for spatial multibody systems containing flexible bodies is developed in the relative joint coordinate space. Constraint acceleration equations are derived in terms of relative coordinates using the velocity transformation technique. An inverse velocity transformation operator, which transforms the Cartesian velocities to the relative velocities, is derived systematically corresponding to the types of kinematic joints connecting the bodies and the system reference matrix. Using the resulting matrix, the joint reaction forces and moments are analyzed in the Cartesian coordinate space. The formulation is illustrated by means of two numerical examples.

Development of a Multibody Dynamics Program Using the Object-Oriented Modeling

  • Han, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.61-70
    • /
    • 2003
  • A multibody system dynamics analysis program is presented using one of the most useful programming methodologies, the object-oriented modeling, The object-oriented modeling defines a problem from the physical world as an abstract object. The object becomes encapsulated with the data and method, Analysis is performed using the object's interface, It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program, The method presented in this paper has several advantages, Since the mechanical components of the multi-body system are converted into the class, the modification, exchange, distribution and reuse of classes are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems, Information can be communicated to each object through messaging. This makes the modeling of new classes easier using the inheritance, When developing a S/W for the computer simulation of a physical system, it is reasonable to use object-oriented modeling.

부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석 (Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components)

  • 황원걸;성원석;안기원
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

Adaptive RRT를 사용한 고 자유도 다물체 로봇 시스템의 효율적인 경로계획 (Efficient Path Planning of a High DOF Multibody Robotic System using Adaptive RRT)

  • 김동형;최윤성;염서군;라로평;이지영;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.257-264
    • /
    • 2015
  • This paper proposes an adaptive RRT (Rapidly-exploring Random Tree) for path planning of high DOF multibody robotic system. For an efficient path planning in high-dimensional configuration space, the proposed algorithm adaptively selects the robot bodies depending on the complexity of path planning. Then, the RRT grows only using the DOFs corresponding with the selected bodies. Since the RRT is extended in the configuration space with adaptive dimensionality, the RRT can grow in the lower dimensional configuration space. Thus the adaptive RRT method executes a faster path planning and smaller DOF for a robot. We implement our algorithm for path planning of 19 DOF robot, AMIRO. The results from our simulations show that the adaptive RRT-based path planner is more efficient than the basic RRT-based path planner.

자기부상열차의 동적 모델링 연구 (A Study of Dynamic Modeling of a Magnetic Levitation Vehicle)

  • 한형석;조홍재;김동성
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.160-166
    • /
    • 2003
  • Interest in advanced vehicles results in correspondingly increased interest in modeling and simulation of the dynamic behavior of Maglev-type vehicle systems. DADS is a program especially suited for the analysis of multibody mechanical systems. This paper demonstrates the application of DADS to the dynamic modeling and simulation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities of DADS. As a case study, an analysis of a vehicle based on the UTM01 system is presented. This paper shows that the presented modeling technique is applicable to the dynamic characteristics evaluation and control law design of Maglev- type vehicles.

Multibody Dynamics of Closed, Open, and Switching Loop Mechanical Systems

  • Youm, Youn-Gil
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.237-254
    • /
    • 2005
  • The vast mechanical systems could be classified as closed loop system, open loop system and open & closed (switching) system. In the closed loop system, the kinematics and dynamics of 3-D mechanisms will be reviewed and closed form solutions using the direction cosine matrix method and reflection transformation method will be introduced. In the open loop system, kinematic & dynamic analysis methods regarding the redundant system which has more degrees of freedom in joint space than those of task space are reviewed and discussed. Finally, switching system which changes its phase between closed and open loop motion is investigated with the principle of dynamical balance. Among switching systems, the human gait in biomechanics and humanoid in robotics are presented.

유연 다물체 동역학 해석을 이용한 4축 이적재 로봇의 주요 부품 선정 (Selecting Main Parts of a Four-Axis Palletizing Robot Through Dynamic Analysis of Rigid-Flexible Multibody Systems)

  • 박일환;고아라;설상석;홍대선
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.54-63
    • /
    • 2022
  • Among the various industrial robots, palletizing robots have received particular attention because of their higher productivity in accordance with technological progress. When designing a palletizing robot, the main components, such as the servo motors and reducers, should be properly selected to ensure its performance. In this study, a practical method for selecting the motors and reducers of a robot was proposed by performing the dynamic analysis of rigid-flexible multibody systems using ANSYS and ADAMS. In the first step, the links and frames were selected based on the structural analysis results obtained from ANSYS. Subsequently, a modal neutral file (MNF) with information on the flexible body was generated from the links and frames using modal analysis through ANSYS and APDL commands. Through a dynamic analysis of the flexible bodies, the specifications of the major components were finally determined by considering the required torque and power. To verify the effectiveness of the proposed method, the analysis results were compared with those of a rigid-body model. The comparison showed that rigid-flexible multibody dynamic analysis is much more useful than rigid body analysis, particularly for movements heavily influenced by gravity.

Dynamics of Track/Wheel Systems on High-Speed Vehicles

  • Kato Isamu;Terumichi Yoshiaki;Adachi Masahito;Sogabe Kiyoshi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.328-335
    • /
    • 2005
  • For high speed railway vehicles, we consider a vibration of flexible track/wheel system. It is very important to deal with the complex phenomena of high-speed vehicles that can be occurred in the vertical vibration of the system. From a viewpoint of multibody dynamics, this kind of problem needs accurate analysis because the system includes mutual dynamic behaviors of rigid body and flexible body. The simulation technique for the complex problems is also discussed. We consider the high-speed translation, rail elasticity, elastic supports under the rail and contact rigidity. Eigen value analysis is also completed to verify the mechanism of the coupled vertical vibration of the system.

민감도 해석을 이용한 현가장치의 동역학적 최적설계 (Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis)

  • 탁태오
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF