• 제목/요약/키워드: multibody systems

검색결과 130건 처리시간 0.021초

Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.83-101
    • /
    • 2016
  • This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS) formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

고하중용 버킷 롤러체인 시스템의 다물체 동역학 해석 및 내구성 연구 (Study on Multibody Dynamic Analysis and Durability of Heavy Load Bucket Roller Chain System)

  • 김창욱;박진철;이동우;송정일
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, multibody dynamic and mechanical analyses were conducted for the structure of roller chain bucket elevator system. The fatigue life of the roller chain elevator system was determined under static and fatigue loadings. Results of multibody dynamic analysis suggested that the maximum contact force occurred at the drive sprocket engagement point with the roller chain due to maximum tension. Fatigue analysis results suggest that the high load roller chain system is durable and safe because its life time is more than 700,000 cycles, close to its designed value (1,000,000 cycle). However, the contact portion of plate and pin needed a safety factor. The dynamic analysis of the heavy load roller chain was conducted with a multibody dynamic analysis program. The results obtained in this study can be utilized for dynamic analysis of roller chain systems in all industries.

병렬 처리를 이용한 부분 시스템 기반 유연다물체 동역학의 효율적인 해석 연구 (Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method)

  • 한종부;송하준;김성수
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.507-515
    • /
    • 2017
  • 많은 절점 자유도로 표현이 되는 유연다물체 시스템의 효율적인 해석을 위해서는 병렬처리 기법이 적용될 수 있다. 이 분야에서의 병렬처리기법은 주로 선형대수방정식의 효율적인 해법에 초점이 맞추어 연구가 진행되었다. 본 논문에서는 기존의 방법과는 달리 병렬처리에 적합한 유연다물체 동역학 공식을 부분 시스템 합성방법을 이용하여 개발하고, OpenMP를 사용한 효율적인 병렬처리 방식을 제안하였다. 서로 다른 두 가지 병렬처리 방식을 3개의 동일한 유연체 회전 날개 시스템 시뮬레이션 통하여 비교하였다. 또한 실제의 CPU시간을 비교하여 제안한 병렬처리 방법의 효율성을 고찰하였다.

탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발 (The Development of a Sliding Joint for Very Flexible Multibody Dynamics)

  • 서종휘;정일호;수기야마;사바나;박태원
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

직접미분법을 이용한 현가장치의 기구학적 민감도해석 (Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation)

  • 민현기;탁태오;이장무
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

다물체 시스템의 민감도 해석 (DESIGN SENSITIVITY ANALYSIS FOR MULTIBODY SYSTEMS)

  • Lee, Jong-Nyun;Park, Soo-Hong
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.378-382
    • /
    • 1996
  • This paper presents a 'mixed' method for performing the sensitivity analysis for multibody dynamics. The mixed method uses both the analytical derivation and the numerical evaluation, in which premitive derivations rely on the analytical process and their associated individual terms are evaluated by the numerical precess. Therefore, this method can eliminate difficulty in dervation of the direct differentiation. Furthermore, by using the joint coordinate formulation for the equations of motion, compulational efficiencyand numerical accuracy are achieved.

  • PDF

효율적인 다물체 동역학 해법 및 인공위성 전개장치에의 응용 (An efficient solution for multibody dynamics and application to satellite deployment mechanism)

  • 이기수;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.680-685
    • /
    • 1992
  • Solar arrays and antennas of the satellite are usually stowed within the dimensions of the launch-vehicle fairing and deployed in the orbit. To solve such multibody dynamic problems, differential equations and algebraic equations are simultaneously solved, and special solution techniques are required. In this paper, Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Defomable bodies as well as rigid bodies are treated, and applications to satellite solar arrays are explained.

  • PDF

객체지향 데이터 모델을 이용한 다물체 동역학 해석 시스템 개발 (Development of a Multibody Dynamics Analysis System Using the Object-Oriented Data Model)

  • 박태원;송현석;서종휘;한형석;이재경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1487-1490
    • /
    • 2003
  • In this paper, the application of object-oriented Data Model to develop a multibody dynamic system, called O-DYN, is introduced. Mechanical components, such as bodies, joints, forces are modeled as objects which have data and method by using object-oriented modeling methodology. O-DYN, a dynamic analysis system, based on the object-oriented modeling concept is made in C++. One example is analyzed through the O-DYN, It is expected that the analysis program or individual module constructed in this paper would be useful for mechanical engineers in predicting the dynamic responses of multibody systems and developing an analysis program

  • PDF

멀티레이트 수치적분법을 이용한 유연다물체 동역학해석 (Flexible Multibody Dynamic Analysis Using Multirate Integration Method)

  • 김성수;김봉수
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2804-2811
    • /
    • 2000
  • A Nordsick form opf the multirate integration scheme has been proposed for flexible multibody dynamic systems. It is assumed that vibrational modal coordinates in the equations of motion are treated as fast variables, whereas the relative joint coordinates are treated as slow variables. In the multirate integration, the fast variables are integrated with small step-size, and the slow variables are integrated with larger step-size. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multrate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of the military tank have been carried out to show the effectiveness and efficiency of the proposed method.