• Title/Summary/Keyword: multiband receiver

Search Result 19, Processing Time 0.024 seconds

Design and Performance of a Direct RF Sampling Receiver for Simultaneous Reception of Multiband GNSS Signals (다중대역 GNSS 신호 동시 수신을 위한 직접 RF 표본화 수신기 설계 및 성능)

  • Choi, Jong-Won;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 2016
  • In this paper, we design a direct radio frequency (RF) sampling receiver for multiband GNSS signals and demonstrate its performance. The direct RF sampling is a technique that does not use an analog mixer, but samples the passband signal directly, and all receiver processes are done in digital domain, whereas the conventional intermediate frequency (IF) receiver samples the IF band signals. In contrast to the IF sampling receiver, the RF sampling receiver is less complex in hardware, reconfigurable, and simultaneously converts multiband signals to digital signals with an analog-to-digital (AD) converter. The reconfigurability and simultaneous reception are very important in military applications where rapid change to other system is needed when a system is jammed by an enemy. For simultaneous reception of multiband signals, the sampling frequency should be selected with caution by considering the carrier frequencies, bandwidths, desired intermediate frequencies, and guard bands. In this paper, we select a sampling frequency and design a direct RF sampling receiver to receive multiband global navigation satellite system (GNSS) signals such as GPS L1, GLONASS G1 and G2 signals. The receiver is implemented with a commercial AD converter and software. The receiver performance is demonstrated by receiving the real signals.

The Performance Analysis of DS-UWB Systems with Multiband Rake Receiver (멀티밴드 레이크 수신기를 적용한 DS-UWB 시스템의 성능분석)

  • Choi Yun-Sung;Kim Su-Nam;Kang Dong-Wook;Kim Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.69-75
    • /
    • 2004
  • In the paper, system is combined multiband system with DS-UWB techniques with properties including low peak-to-average power ratio, robustness to multiuser interference and excellent security. Because each sub-band is not satisfied with coherence bandwidth, rake receiver in each sub-band is applied to the Proposed system receiver. Output of rake receiver is combined by using Maximal Ratio combining technology. In this paper we mathematically analyse the BER of the DS-UWB system with singleband and multiband systems in the narrow interference channel condition and multi user interference channel condition, the simulation results show that proposed scheme is getting robuster with increasing of the number of subbands.

RF Band-Pass Sampling Frontend for Multiband Access CR/SDR Receiver

  • Kim, Hyung-Jung;Kim, Jin-Up;Kim, Jae-Hyung;Wang, Hongmei;Lee, In-Sung
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.214-221
    • /
    • 2010
  • Radio frequency (RF) subsampling can be used by radio receivers to directly down-convert and digitize RF signals. A goal of a cognitive radio/software defined ratio (CR/SDR) receiver design is to place the analog-to-digital converter (ADC) as near the antenna as possible. Based on this, a band-pass sampling (BPS) frontend for CR/SDR is proposed and verified. We present a receiver architecture based second-order BPS and signal processing techniques for a digital RF frontend. This paper is focused on the benefits of the second-order BPS architecture in spectrum sensing over a wide frequency band range and in multiband receiving without modification of the RF hardware. Methods to manipulate the spectra are described, and reconstruction filter designs are provided. On the basis of this concept, second-order BPS frontends for CR/SDR systems are designed and verified using a hardware platform.

A 85-mW Multistandard Multiband CMOS Mobile TV Tuner for DVB-H/T, T-DMB, and ISDB-T Applications with FM Reception

  • Nam, Ilku;Bae, Jong-Dae;Moon, Hyunwon;Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.381-389
    • /
    • 2015
  • A fully integrated multistandard multiband CMOS mobile TV tuner with small silicon area and low power consumption is proposed for receiving multiple mobile digital TV signals and FM signal. In order to reduce the silicon area of the multistandard multiband receiver, other RF front-end circuits except LNAs are shared and a local oscillator (LO) signal generation architecture with a single VCO for a frequency synthesizer is proposed. To reduce the low frequency noise and the power consumption, a vertical NPN BJT is used in an analog baseband circuits. The RF tuner IC is implemented in a $0.18-{\mu}m$ CMOS technology. The RF tuner IC satisfies all specifications for DVB-H/T, T-DMB, and ISDB-T with a sufficient margin and a successful demonstration has been carried out for DVB-H/T, T-DMB, and ISDB-T with a digital demodulator.

The Design of A CMOS Gm-C Lowpass Filter with Variable Cutoff Frequency for Direct Conversion Receiver (직접변환 수신기용 가변 차단주파수특성을 갖는 CMOS Gm-C 저역통과필터 설계)

  • Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1464-1469
    • /
    • 2008
  • A CMOS Gm-C filter with variable cutoff frequency applicable for using in the direct conversion receiver is designed. The designed filter comprises the CMOS differential transconductors, and the gm of the transconductor is controlled by the bias voltage. This configuration can compensate variant of the cutoff frequency which could be generated by external noises, and also be used in multiband receiver. As a results of HSPICE simulation, the control range of the cutoff frequency is $1.5MHz{\sim}3.5MHz$ and the gain control range is $-2.8dB{\sim}2.6dB$. The layout of the designed 5th-order Elliptic low-pass filter is performed to fabricate a chip using $2.5V-0.25{\mu}m$ CMOS processing parameter.

Design and Fabrication of a Multi-Function Circuit to Implement Hybrid-Conversion RF Front-End for Broadband and Multiband System (광대역 및 다중 대역 시스템용 혼성 변환 방식 RF 전단부 구현을 위한 다중 기능 회로의 설계 및 제작)

  • Go, Min-Ho;Ju, Young-Rim;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.292-300
    • /
    • 2010
  • In this paper, we propose a RF front-end architecture based on hybrid conversion which is available to receive both broadband and multiband DVB-H receiver, and a multi-function circuit for implementing the RF front-end is fabricated. A multi-function circuit is operated as a sub-harmonic mixer mode in the case of receiving a broadband VHF/UHF band, which show a conversion loss of -10.0 dB, noise figure of 7.0 dB and IIP3 of 2.0 dBm. On the other hand, it is performed as a attenuation mode with a insertion loss of -10.0 dB in receiving a multiband, L-band.

A Multiple-Symbol Interval Estimation Algorithm for Precision Improvement of Initial Carrier-Frequency Synchronization in Multiband-OFDM UWB System (MB-OFDM UWB 시스템에서 초기 반송파 주파수 동기의 정확도 향상을 위한 다중 심볼 간격 추정 알고리즘)

  • Jin, Yong-Sun;Park, Kye-Wan
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • In this paper, we propose an algorithm to improve the precision of initial carrier-frequency offset estimation for multiband-OFDM (MB-OFDM) UWB system which is considering the quantization-noise effect. In the general OFDM system, the two adjacent and repeated preamble symbols are used for the initial carrier-frequency synchronization while the performance of the frequency-offset estimation is bounded by quantization effect generated from analog-to-digital conversion at the receiver. This paper proposes a method in which one-symbol interval between two adjacent preamble symbols for the initial frequency synchronization is extended to multiple-symbol interval between non-adjacent symbols in an extent that phase ambiguity does not occur. In this paper, we also present '6' as optimal multiple symbol interval for the MB-OFDM system with 30 preamble symbols on 3-band hopping and with 4-bit A/D conversion at the receiver. Under the channel environments for the MB-OFDM UWB system, the simulation results show that the proposed estimation algorithm can achieve the initial estimation in offset precision less than 5 ppm.

Synchronization Technique Based on Adaptive Combining of Sub-correlations of Multiband Sine Phased BOC Signals (부상관함수의 적응적 결합에 기반한 다중 대역 Sine 위상 BOC 신호 동기화 기법)

  • Park, Jong-In;Lee, Young-Po;Yoon, Seok-Ho;Kim, Sun-Yong;Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.694-701
    • /
    • 2011
  • This paper addresses a synchronization technique based on an adaptive combining of the sub-correlation functions obtained from multiband sine phased binary offset carrier (BOC) signals, allowing a BOC signal receiver to deal with multiband sine phased BOC signals. Specifically, we first obtain the sub-correlation functions composing the BOC autocorrelation function, and then, re-combine the sub-correlation functions generating a correlation function with no side-peak. Finally, by replacing the BOC autocorrelation with the correlation function with no side-peak in the delay lock loop, the proposed scheme performs unambiguous signal tracking. The proposed synchronization scheme is applicable to generic sine phased BOC signals. Numerical results demonstrate that the proposed scheme provides a performance improvement over the conventional unambiguous schemes in terms of the tracking error standard deviation.

A study on the multiband interpolant filter for the second-order BPS system (2차 BPS 시스템을 위한 다중 대역 interpolant 필터 설계에 대한 연구)

  • Kim, Hyuk;Baek, Jein
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.69-72
    • /
    • 2012
  • In the bandpass sampling(BPS), the sampling frequency is lower than the frequency of the RF(radio frequency) signal being sampled. In this method, the baseband spectrum directly appears by the sampling itself, so that it is not necessary to use any down converter, making the receiver's hardware simpler. The second-order BPS uses two identical BPS samplers operating with an offset timing to each other. By a processing with their two sampled signals, it can be possible to cancel the aliasing or interference component if any due to the bandpass sampling. The interpolant filter, which is to manipulate the phase characteristics of the sampled signal, affects the performance of the cancellation. In this paper, a multiband interpolant filter is introduced, with which multiple interference signals from multiple RF bands can be cancelled simultaneously. We suggest several phase characteristics for the interpolant filter and have evaluated their performances through computer simulations. It has been shown that the filter with a continuous phase function gives the better performance.

  • PDF