• Title/Summary/Keyword: multi-wells

Search Result 61, Processing Time 0.035 seconds

Analytical Solution for Flow Field by Arbitrarily-Located Multi Injection-Pumping Wells

  • Yoo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.79-82
    • /
    • 2001
  • Analytical solutions have been derived to delineate the capture zone created by pumping wells for the remediation design of contaminated groundwater. These previous analytical solutions are often restricted to pumping wells only, specific well locations, a limited number of wells, and an isotropic aquifer. Analytical solution was developed to deal with arbitrarily located multi injection-pumping wells in an anisotropic homogeneous aquifer. The solution presented in this study provides a simple, easy method for determining tile complex flow field caused by multi injection-pumping wells at different rates, and will consequently be useful in pump-and-treat design.

  • PDF

Productivity Analysis for Multi-Wells Depressurization of Gas Hydrate Bearing Sediments in Ulleung Basin, East Sea of Korea (동해 울릉분지 가스하이드레이트 퇴적층 내 다중정 감압에 따른 생산성 분석)

  • Moon, Seo-Yoon;Shin, Hyo-Jin;Lim, Jong-Se
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.295-306
    • /
    • 2021
  • A field scale productivity analysis is required for the development of gas hydrate in marine sedimentary layers to verify the field applicability of production techniques and to improve productivity. In this study, the productivity resulting from the application of depressurization using multi-wells for the development of gas hydrate in the Ulleung Basin, East Sea of Korea, was determined. A numerical analysis model reflecting the conditions of candidate sites for the Ulleung Basin was constructed, and the productivity and dissociation behavior were comparatively analyzed. The pressure propagation and gas hydrate dissociation region by the multi-wells were wider and the productivity was higher than that of a single well. Different depressurization effects according to the spacing of multi-wells affected productivity. The results provide basic data for productivity analysis when establishing a field test production plan for the Ulleung Basin.

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Characteristics of Optical Absorption in ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ Multi-Quantum Wells by a Surface Photovoltage Method (표면 광전압 방법에 의한 ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ 다중 양자우물 구조의 광 흡수 특성)

  • Kim, Gi-Hong;Choe, Sang-Su;Son, Yeong-Ho;Bae, In-Ho;Hwang, Do-Won;Sin, Yeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.698-702
    • /
    • 2000
  • The characteristics of optical absorption in $Al_{0.24}Ga_{0.76}As/GaAs$ multi-quantum wells(MQWs) structure were investigated by using the surface photovoltage(SPV). The Spy features near 1.42 eV showed two overlapping signals. By chemical etching, we found associated with the GaAs substrate and the GaAs cap layer. The Al composition(x=24 %) was determined by Kuech's composition formula. In order to identify the transition energies. the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum wells An amplitude variation of the relative Spy intensity from the GaAs substrate, llH, and llL was observed at different light intensities. A variation in the SPY line shape of the transition energies were observed with decreasing tempera­t ture.

  • PDF

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

Photoluminescence study in GaAs/AlGaAs multi-quantum well structure by hydrogen passivation (수소화 처리에 의한 GaAs/AIGaAs 다중양자우물의 PL 연구)

  • Park, Se-Ki;Lee, Cheon;Jung, Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.468-472
    • /
    • 1997
  • The effect of the surface state on the quantum efficiency of underlying GaAs/AlGaAs multi-quantum well(MQW) structures consisting of three GaAs quantum wells with different thickness, is studied by low temperature photoluminescence(PL). The structure was grown by molecular beam epitaxy(MBE) on (100) GaAs substrate. The thickness of three GaAs quantum wells was 3, 6 and 9 nm, respectively. The MQWs were placed apart from 50 nm AlGaAs edge-barriers including two inner-barriers with 15 nm in thickness. The samples used in this study were prepared with different growth temperatures. Particularly, the hydrogen passivation effect to the 9 nm quantum well located at near surface appeared much stronger than any others. Transition energy and optical gain related to the hydrogen passivation effects on the multi-quantum well structure was calculated by transfer matrix method.

  • PDF

Global Optimization of Placement of Multiple Injection Wells with Simulated Annealing (담금질모사 기법을 이용한 인공함양정 최적 위치 결정)

  • Lee, Hyeonju;Koo, Min-Ho;Kim, Yongcheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.67-81
    • /
    • 2015
  • A FORTRAN program was developed to determine the optimal locations of multiple recharge wells in an aquifer with different arrangements of pumping wells. The simulated annealing algorithm was used to find optimal locations of two recharge wells which satisfied three objective functions. The model results show that locating two injection wells inside the cluster of pumping wells is efficient if the recovery rate only was taken into account. In contrast, placing injection wells to the side of the cluster is desirable if the simulation considers aggregate objective function. Therefore, installing an injection well on each side of the cluster seems to yield the maximum recovery rates for the existing pumping wells, and it yields similar increases in pumping rate for all wells in the cluster. The locations of recharge wells can be arranged in numerous configurations, because there are multiple near-optimal local minima or maxima. These results indicate that the simulated annealing can yield effective evaluations of the optimal locations of multiple recharge wells. In addition, the suggested aggregate objective function can be utilized as an appropriate multi-objective optimization.

Design of optical directional couplers using Nano-Scale MQWs (나노 양자우물구조를 이용한 광통신용 방향성 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • An optical directional coupler, which consists of quantum wells with nanothickness, is designed by using Modal Transmission Line Theory (MTLT). To demonstrate the validity and usefulness, the propagation characteristics and the coupling efficiencies are rigorously evaluated at nanoscale couplers, which consist of double quantum wells with different effective masses. The numerical result reveals that the coupling efficiency of nanoscale couplers is maximized at a coupling length 2052.3 nm, if the total electron energy is 83.9 meV. Furthermore, the coupler operates as a filter with narrower band as the barrier thickness increases.