• Title/Summary/Keyword: multi-walled carbon nanotube (MWNT)

검색결과 63건 처리시간 0.031초

Characterization of Au-MWNT nanocomposite in thin films (다중벽 탄소나노튜브와 금나노입자를 사용한 나노박막의 특성연구)

  • Kim, Jung-Soo;Bae, Jong-Seong;Ko, Chang-Hyun;Oh, Won-Tea
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.49-49
    • /
    • 2009
  • Nanocomposites of gold nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared by electrostatic interaction. Gold nanopartic1es were stabilized by polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and poly(sodium-4-styrenesulfonate) (PSS) in aqueous medium, and MWNTs were modified by poly(diallyldimethylammonium)chloride (PDDA) in water. The as-perpared Au-MWNT nanocomposites were structurally and electrically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV/Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclo voltammetry (CV). UV/Vis spectra of Au-MWNT nanocomposites showed the characteristic surface plasmon bands in the range of ~515nm, depending on the stabilizers. There is only slight change on the band shape with variation of stabilizing agents for gold nanoparticles. Through FE-SEM and TEM images, the distribution of gold, nanoparticles on the sidewalls of MWNTs was deliberately investigated on Au-MWNT nanocomposites treated with different stabilizers. XPS and CV showed redistribution of electron densities and changes in the binding energy states of nanopartic1es in nanocomposite respectively.

  • PDF

Inter-lamina Shear Strength of MWNT-reinforced Thin-Ply CFRP under LEO Space Environment

  • Moon, Jin Bum;Kim, Chun-Gon
    • Composites Research
    • /
    • 제30권1호
    • /
    • pp.7-14
    • /
    • 2017
  • In this paper, the inter-lamina shear strength (ILSS) of multi-wall carbon nanotube (MWNT) reinforced carbon fiber reinforced plastics (CFRP) and thin-ply composites were verified under low earth orbit (LEO) space environment. CFRP, MWNT reinforced CFRP, thin-ply CFRP and MWNT reinforced thin-ply CFRP were tested after aging by using accelerated ground simulation equipment. The used ground simulation equipment can simulate high vacuum ($2.5{\times}10^{-6}torr$), atomic oxygen (AO, $9.15{\times}10^{14}atoms/cm^2{\cdot}s$), ultraviolet light (UV, 200 nm wave length) and thermal cycling ($-70{\sim}100^{\circ}C$) simultaneously. The duration of aging experiment was twenty hours, which is an equivalent duration to that of STS-4 space shuttle condition. After the aging experiment, ILSS were measured at room temperature ($27^{\circ}C$), high temperature ($100^{\circ}C$) and low temperature ($-100^{\circ}C$) to verify the effect of operation temperature. The MWNT and thin-ply shows good improvement of ILSS at ground condition especially with the thin-ply. And after LEO exposure large degradation of ILSS was observed at MWNT added composite due to the thermal cycle. And the degradation rate was much higher under the high temperature condition. But, at the low temperature condition, the ILSS was largely recovered due to the matrix toughening effect.

Thermal and Electrical Properties of Polyacrylate/Carbon Nanotube Composite Sheet (폴리아크릴레이트/카본나노튜브 복합체 시트의 열적.전기적 성질)

  • Choi, A.Y.;Yoon, K.H.
    • Elastomers and Composites
    • /
    • 제46권3호
    • /
    • pp.231-236
    • /
    • 2011
  • The polyacrylate/multi-walled carbon nanotube (MWNT) composites were prepared and investigated for the application as a counter electrode in solar cell. The electrical conductivity of the composites was increased with increasing MWNT content and with the thickness of the sheet. The surface resistivity value of the composite at 50 wt% loading of MWNT was 0.36 ${\Omega}$/sq. The thermal decomposition temperature of the composites was also increased with the MWNT contents, and the increase of $15^{\circ}C$ was observed at the composite of polyacrylate/MWNT (50/50, w/w). The increase of storage modulus of the composites was observed, especially at the higher temperature compared to polyacrylate. The dimensional change of polyacrylate decreased over $20^{\circ}C$, but that of the composite increased linearly with the temperature. The morphology of the composites stands for the good dispersion of MWNT into the polyacrylate matrix.

Experimental study of assembly of the carbon nanotube tip for SPM (SPM 용 카본 나노튜브 팁 조립의 실험적 연구)

  • Park J.K.;Kim J.E.;Han C.S.;Park Y.G.;Hwang K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1228-1231
    • /
    • 2005
  • This paper reports about the development of scanning probe microscopy (SPM) tip with multi-walled carbon nanotube (MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which causes the dielectrophoresis was used for alignment and deposition of CNTs to the metal coated SPM tip. By dropping the MWNT solution and applying an electric field between an SPM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the SPM tips due to the attraction by the dielectrophoretic force. In this paper, we investigate experimental conditions about the alignment of the CNT to tip axis according to the change of the angle between a tip and an electrode. Experimental results are presented, and then fabricated CNT tips are showed and measurement results for 15nm gold particles are compared with that of the conventional silicon tip.

  • PDF

Fabrication and Design of Multi-Layered Radar Absorbing Structures of MWNT-Filled Glass/Epoxy Plain-Weave Composites (MWNT가 첨가된 유리/에폭시 평직 복합재료로 이루어진 다층형 전자파 흡수 구조체의 제작 및 설계)

  • Lee, Sang-Eui;Kang, Ji-Ho;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제33권11호
    • /
    • pp.24-32
    • /
    • 2005
  • The object of this study is to design radar absorbing structures(RAS) with load-bearing ability in X-band. Glass/Epoxy plain-weave composites of excellent specific stiffness and strength, containing multi-walled carbon nanotubes(MWNT) added to induce dielectric loss were fabricated. The observation of microstructure and the permittivity of the composites confirmed that the materials are suitable to be used for radar absorbing material. Genetic algorithm and theory for reflection/transmission of electromagnetic waves in a multi-layered RAS were applied to conduct an optimal design of a RAS composed of the developed composites. We observed that the thickness per ply changes with the number of ply and MWNT contents. The fabrication process was proposed considering the problem and applied to fabricate a designed RAS and the theoretical and measured reflection loss of the RAS were also found in good agreement.

Direct Fabrication of the Scanning Probe Tip with Multi­Walled Carbon Nanotubes Using Dielectrophoresis

  • Lee Hyung-Woo;Han Chang-Soo;Lee Eung-Sug;Chul Youm;Kim Jae Ho;Kim Soo-Hyun;Kwak Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.50-54
    • /
    • 2005
  • We report a simple, low cost, and reliable method for assembling a multi-walled nanotube (MWNT) to the end of a metal coated scanning probe microscopy (SPM) tip. By dropping the MWNT solution and applying an electric field between an SPM tip and an electrode, MWNTs which were dispersed into a dielectric solution were directly assembled onto the apex of the SPM tip due to the attraction by the dielectrophoretic force. The effective measurement of a MWNT -attached SPM tip was demonstrated by direct comparison with AFM images of a standard sample with a bare AFM tip.

A Study on Mechanical Properties of MWNT/PMMA Nanocomposites Fabricated by Injectiion Molding (사출성형법으로 제작된 MWNT/PMMA 복합재의 기계적 물성에 관한 연구)

  • 이원준;이상의;김천곤
    • Composites Research
    • /
    • 제17권4호
    • /
    • pp.47-52
    • /
    • 2004
  • This paper established the procedure to fabricate the MWNT/PMMA nanocomposite by using together with injection molding and film casting processes. The fabrication process made it possible for MWNTs to be well dispersed in the PMMA matrix and also it could maintain the well-dispersed state effectively. And the mechanical material properties and SEM images of the fractural surface were observed. Moreover, a surfactant was used to disperse MWNTs more effectively and mechanical material properties were also investigated.

A Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제19권3호
    • /
    • pp.275-283
    • /
    • 2007
  • An experimental study was conducted to investigate the effect of the morphology of CNT (Carbon Nanotube) on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using a steady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature. Although functionalized SWNT (Single-Walled Carbon Nanotube) produced more stable and homogeneous suspensions, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0% by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT (Multi-Walled Carbon Nanotube), the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • 제54권2호
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

Study of Multi-Walled Carbon Nanotube Synthesis Using Liquid Nitrogen and Post-Process Filtration

  • Sornsuwit, Nuttaphong;Maaithong, Worawut
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.18-21
    • /
    • 2008
  • The study deals with the effects of parameters in the synthesis of carbon nanotubes in liquid nitrogen to find the most appropriate conditions such as electrical voltage and time that give carbon nanotubes with large volume and less proportion of impurity, which is a non-nanotubed carbon. The experiment employed the method of arc-discharge between graphite cathode and anode which are immersed in liquid nitrogen. The electrical DC current of 60A and 70A were applied with the time period ranging from 10 seconds to 25 seconds. It was found that the electrical current of 60A and 13 seconds arc-discharge time allowed the largest volume of carbon nanotubes generation. The longer time leads to more impurities around the carbon nanotubes. By the filtration of CNTs-suspended solution using 0.2 micrometers porous paper filter and the characterization using TEM, the carbon nanotubes synthesized in the study were approximately 25 layers multi-walled nanotubes with the average diameter of 18.2 nanometers.