• 제목/요약/키워드: multi-vehicle management problem

검색결과 25건 처리시간 0.03초

유전자알고리즘 및 발견적 방법을 이용한 차량운송경로계획 모델 (Integrated Vehicle Routing Model for Multi-Supply Centers Based on Genetic Algorithm)

  • 황흥석
    • 한국시뮬레이션학회논문지
    • /
    • 제9권3호
    • /
    • pp.91-102
    • /
    • 2000
  • The distribution routing problem is one of the important problems in distribution and supply center management. This research is concerned with an integrated distribution routing problem for multi-supply centers based on improved genetic algorithm and GUI-type programming. In this research, we used a three-step approach; in step 1 a sector clustering model is developed to transfer the multi-supply center problem to single supply center problems which are more easy to be solved, in step 2 we developed a vehicle routing model with time and vehicle capacity constraints and in step 3, we developed a GA-TSP model which can improve the vehicle routing schedules by simulation. For the computational purpose, we developed a GUI-type computer program according to the proposed methods and the sample outputs show that the proposed method is very effective on a set of standard test problems, and it could be potentially useful in solving the distribution routing problems in multi-supply center problem.

  • PDF

왕복비대칭 차량이동속도 하에서의 복수차량 배송경로 최적화 (Optimization of Delivery Route for Multi-Vehicle under Time Various and Unsymmetrical Forward and Backward Vehicle Moving Speed)

  • 박성미;문기주
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.138-145
    • /
    • 2013
  • A sweep-based heuristic using common area is developed for multi-vehicle VRPs under time various and unsymmetric forward and backward vehicle moving speed. One depot and 2 delivery vehicle are assumed in this research to make the problem solving strategy simple. A common area is held to make adjustment of possible unbalance of between two vehicle delivery completion times. The 4 time zone heuristic is used to solve for efficient delivery route for each vehicle. The current size of common area needs to be studied for better results, but the suggested problem solving procedures can be expanded for any number of vehicles.

다단계 물류 네트워크에서 A/S 부품 집화 및 배송이 연속적으로 발생하는 문제에 관한 사례연구 -자동차 부품 물류 프로세스를 중심으로- (Case Study on the continuous pickup and delivery vehicle routing problem in Multi-level Logistic Network based on S automobile Part Logistics Process)

  • 송준우;김경섭;정석재
    • 대한안전경영과학회지
    • /
    • 제15권2호
    • /
    • pp.193-204
    • /
    • 2013
  • The growing logistics strategy of a company is to optimize their vehicle route scheduling in their supply chain system. It is very important to analyze for continuous pickups and delivery vehicle scheduling. This paper is a computational study to investigate the effectiveness of continuous pickups and delivery vehicle routing problems. These scheduling problems have 3 subproblems; Inbound Vehicle Routing Problem with Makespan and Pickup, Line-haul Network Problem, and Outbound Vehicle Routing Problem with Delivery. In this paper, we propose 5 heuristic Algorithms; Selecting Routing Node, Routing Scheduling, Determining Vehicle Type with Number and Quantity, and Modification Selecting Routing Node. We apply these Algorithms to S vehicle company. The results of computational experiments demonstrate that proposed methods perform well and have better solutions than other methods considering the basic time and due-date.

Multi-vehicle Route Selection Based on an Ant System

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.61-67
    • /
    • 2008
  • This paper introduces the multi-vehicle routing problem(MRP) which is different from the traveling sales problem(TSP), and presents the ant system(AS) applied to the MRP. The proposed MRP is a distributive model of TSP since many vehicles are used, not just one salesman in TSP and even some constraints exist. In the AS, a set of cooperating agents called vehicles cooperate to find good solutions to the MRP. To make the proposed MRP extended more, Tokyo city model(TCM) is proposed. The goal in TCM is to find a set of routes that minimizes the total traveling time such that each vehicle can reach its destination as soon as possible. The results show that the AS can effectively find a set of routes minimizing the total traveling time even though the TCM has some constraints.

시간제약을 가진 다회방문 차량경로문제에 대한 휴리스틱 알고리즘 (A heuristic algorithm for the multi-trip vehicle routing problem with time windows)

  • 김미이;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1740-1745
    • /
    • 2006
  • This paper is concerned with a novel heuristic algorithm for the multi-trip vehicle routing problem with time windows. The objective function is the minimization of total vehicle operating time, fixed cost of vehicle and the minimization of total lateness of customer. A mixed integer programming formulation and a heuristic algorithm for a practical use are suggested. A heuristic algorithm is constructed two phases such as clustering and routing. Clustering is progressed in order to assign appropriate vehicle to customer, and then vehicle trip and route are decided considering traveling distance and time window. It is shown that the suggested heuristic algorithm gives good solutions within a short computation time by experimental result.

  • PDF

다특성 차량경로문제에 대한 휴리스틱 알고리즘 : 국내 복합사료 업체 사례 (Heuristics for Rich Vehicle Routing Problem : A Case of a Korean Mixed Feed Company)

  • 손동훈;김화중
    • 산업경영시스템학회지
    • /
    • 제42권1호
    • /
    • pp.8-20
    • /
    • 2019
  • The vehicle routing problem is one of the vibrant research problems for half a century. Many studies have extensively studied the vehicle routing problem in order to deal with practical decision-making issues in logistics. However, developments of new logistics strategies have inevitably required investigations on solution methods for solving the problem because of computational complexity and inherent constraints in the problem. For this reason, this paper suggests a simulated annealing (SA) algorithm for a variant of vehicle routing problem introduced by a previous study. The vehicle routing problem is a multi-depot and multi-trip vehicle routing problem with multiple heterogeneous vehicles restricted by the maximum permitted weight and the number of compartments. The SA algorithm generates an initial solution through a greedy-type algorithm and improves it using an enhanced SA procedure with three local search methods. A series of computational experiments are performed to evaluate the performance of the heuristic and several managerial findings are further discussed through scenario analyses. Experiment results show that the proposed SA algorithm can obtain good solutions within a reasonable computation time and scenario analyses show that a transportation system visiting non-dedicated factories shows better performance in truck management in terms of the numbers of vehicles used and trips for serving customer orders than another system visiting only dedicated factories.

Sweep해법 및 공동구역 2차 재할당에 의한 복수차량 배송 최적화 연구 (Optimization of Multi-Vehicle Delivery using Sweep Algorithm and Common Area Double Reassignment)

  • 박성미;문기주
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.133-140
    • /
    • 2014
  • An efficient heuristic for two-vehicle-one-depot problems is developed in this research. Vehicle moving speeds are various along hour based time intervals due to traffic jams of rush hours. Two different heuristics are examined. One is that the delivery area assignment is made using Sweep algorithm for two vehicles by splitting the whole area in half to equally divide all delivery points. The other is using common area by leaving unassigned area between the assigned for two vehicles. The common area is reassigned by two stages to balance the completion time of two vehicle's delivery. The heuristic with common area performed better than the other due to various vehicle moving speeds and traffic jams.

다목적 차량경로문제를 위한 발견적 해법 (A Heuristic for Multi-Objective Vehicle Routing Problem)

  • 강경환;이병기;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1733-1739
    • /
    • 2006
  • This paper is concerned with multi-objective vehicle routing problem(VRP), in which objective of this problem is to minimize the total operating time of vehicles and the total tardiness of customers. A mixed integer programming formulation and a heuristic for practical use are suggested. The heuristic is based on the route-perturbation and route-improvement method(RPRI). Performances are compared with other heuristic appeared in the previous literature using the modified bench-mark data set. It is shown that the suggested heuristic give good solution within a short computation time by computational experiment.

  • PDF

납품시간창과 다종차량을 고려한 다종제품 동적로트크기결정 및 디스패칭 문제를 위한 유전 알고리즘 (Genetic Algorithms for a Multi-product Dynamic Lot-sizing and Dispatching Problem with Delivery Time Windows and Multi-vehicle Types)

  • 김병수;채승규;이운식
    • 대한산업공학회지
    • /
    • 제41권3호
    • /
    • pp.233-242
    • /
    • 2015
  • This paper analyzes a multi-product inbound lot-sizing and outbound dispatching problem with multi-vehicle types in a third-party logistics distribution center. The product must be delivered to the customers within the delivery time window and backlogging is not allowed. Replenishing orders are shipped by several types of vehicles with two types of the freight costs, i.e., uniform and decreasing, are considered. The objective of this study is to determine the lot-size and dispatching schedules to minimize the total cost with the sum of inbound and outbound transportation and inventory costs over the entire time horizon. In this study, we mathematically derive a mixed-integer programming model and propose a genetic algorithm (GA1) based on a local search heuristic algorithm to solve large-scale problems. In addition, we suggest a new genetic algorithm (GA2) with an adjusting algorithm to improve the performance of GA1. The basic mechanism of the GA2 is to provide an unidirectional partial move of products to available containers in the previous period. Finally, we analyze the results of GA1 and GA2 by evaluate the relative performance using the gap between the objective values of CPLEX and the each algorithm.

Location Analysis for Emergency Medical Service Vehicle in Sub District Area

  • Nanthasamroeng, Natthapong
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.339-345
    • /
    • 2012
  • This research aims to formulate a mathematical model and develop an algorithm for solving a location problem in emergency medical service vehicle parking. To find an optimal parking location which has the least risk score or risk priority number calculated from severity, occurrence, detection, and distance from parking location for emergency patients, data were collected from Pratoom sub-district Disaster Prevention and Mitigation Center from October 2010 to April 2011. The criteria of risk evaluation were modified from Automotive Industry Action Group's criteria. An adaptive simulated annealing algorithm with multiple cooling schedules called multi-agent simulated quenching (MASQ) is proposed for solving the problem in two schemes of algorithms including dual agent and triple agent quenching. The result showed that the solution obtained from both scheme of MASQ was better than the traditional solution. The best locations obtained from MASQ-dual agent quenching scheme was nodes #5 and #133. The risk score was reduced 61% from 6,022 to 2,371 points.