• Title/Summary/Keyword: multi-time scale

Search Result 522, Processing Time 0.035 seconds

Utilization of CFD Simulation Model for a Bubble Column Photobioreactor (버블 칼럼 광생물반응기의 내부 유동분석을 위한 전산유체역학 시뮬레이션 모델의 이용)

  • Yoo, J.I.;Lee, I.B.;Hwang, H.S.;Hong, S.W.;Seo, I.H.;Bitog, J.P.;Kwon, K.S.;Kim, Y.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • Photobioreactor (PBR) that houses and cultivates microalgae providing a suitable environment for its growth, such as light, nutrients, CO2, heat, etc. is now getting more popular in the last decade. Among the many types of PBRs, the bubble column type is very attractive because of its simple construction and easy operation. However, despite the availability of these PBRs, only a few of them can be practically used for mass production. Many limitations still holdback their use especially during their scale-up. To enlarge the culture volume and productivity while supplying optimum environmental conditions, various PBR structures and process control are needed to be investigated. In this study, computational fluid dynamics (CFD) was economically used to design a bubble-column type PBR taking the place of field experiments. CFD is a promising technique which can simulate the growth and production of microalgae in the PBR. To study bubble column PBR with CFD, the most important factor is the possibility of realizing bubble. In this study, multi-phase models which are generally used to realize bubbles were compared by theoretical approaches and comparing in a 2D simulation. As a result, the VOF (volume of fluid) model was found to be the most effective model to realize the bubbles shape as well as the flow inside PBR which may be induced by bubble injection. Considering the accuracy and economical efficiency, 0.005 second time step size was chosen for 2.5 mm mesh size. These results will be used as criteria for scale-up in the PBR simulation.

Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring (구조물 모니터링을 위한 헤테로 코어형 광센싱 시스템)

  • Kim, Young-Bok;Lee, Kwon-Soon;Watanabe, Kazuhiro;Sasaki, Hiroyuki;Choi, Yong-Woon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.46-51
    • /
    • 2007
  • A multi-purpose environmental monitoring system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensors, for the purposes of monitoring large-scale structures and preserving natural environments. The monitoring system has been tested and evaluated in a possible outdoor condition, in view of the full-scale operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored in each channel, three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation and to clarify temperature influences an the system, in terms of the coupling of optical connectors and the OTDR stability. The results from the pseudo-cracking experiment agreed with the actual cracks, by means of calculation, based an the detected displacement values and their geometrical arrangement of the used sensor modules. The temperature change, ranging from 10 to $20^{\circ}C$ resulting from the 10-days free running operation, was found to influence the system stability of ${\pm}10{\mu}m$, primarily due to the coupling instability of the used optical connectors. It was found that fusion splicing, rather than the use of connectors, reduced the fluctuation dawn to ${\pm}2{\mu}m$. The specification and performance of various option modules have been demonstrated to show the capability of inspecting various physical quantities by use of the single system, which would be suitable for multi-purpose environmental monitoring.

Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer (지표면의 비균질성이 지표층의 난류수송에 미치는 영향)

  • Hong, Seon-Ok;Lee, Young-Hee;Lim, Yoon-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.317-329
    • /
    • 2014
  • Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

A Study on the Test and Evaluation Process Development for Korea Next Generation Highspeed Electric Multiple Unit (차세대 고속열차 시험평가 프로세스에 관한 연구)

  • Lee, Tae-Hyung;Kim, Sang-Soo;Kim, Seog-Won;Kim, Ki-Hwan;Chung, Heung-Chai
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2011
  • A high-speed railway system represents a typical example of large-scale multi-disciplinary system, consisting of subsystems such as rolling-stock, electrical hardware, electronics, control, information, communication, civil technology etc. The system design and acquisition data of the large-scale system must be the subject under strict configuration control and management. Systems engineering technology development project for Korea next generation High-speed Electric Multiple Unit (HEMU) system in progress is a national large system development project that is not only a large-size and complex but also multi-disciplinary in nature. Therefore, all stakeholders must understand and share the functional and performance requirements of HEMU throughout its life-cycle phases. Also in the test and evaluation phase, all systems requirements must be verified. In 2011, the prototype train manufacturing will be completed. It will do test run on the commercial line and all systems requirements are verified until 2012. For the system verification, the test and evaluation process have to be established before the test trial run. Using a systems engineering tool, the system design database(SDD) with requirements traceability and development process management in the course of the development have to be established. This paper represents the test and evaluation process development based on the SEMP(Systems Engineering Management Plan) developed in the design stage. The test and evaluation process is refined and updated in comparison to the design stage one. The test and evaluation process consists of procedure, test and evaluation method and schedule. So through this process, it is defined that each systems requirements is verified on which test and about what time.

Interferometric Monitoring of Gamma-ray Bright AGNs: S5 0716+714

  • Lee, Sang-Sung;Lee, Jee Won;Hodgson, Heffrey A.;Kim, Dae-Won;Algaba, Juan-Carlos;Kang, Sincheol;Kang, Jiman;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.3-29
    • /
    • 2017
  • We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of the KVN key science program known as the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA). Multi-frequency VLBI observations were conducted in 29 sessions from January 16, 2013 to March 1, 2016. The source was detected and imaged in all available frequency bands. For all observed epochs, the source is compact on the milliarcsecond (mas) scale, yielding a compact VLBI core dominating the synchrotron emission on the mas scale. Based on the multi-wavelength data at 15 and 230 GHz, we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements with a time lag of $18{\pm}5$ days. Turnover frequency is found to vary over our observations between 22 to 69GHz. Taking into account the synchrotron self-absorption model of the relativistic jet in S5 0716+714, we estimated the magnetic field strength in the mas emission region to be 0.4-66 mG during the observing period, finding that the magnetic field strength is strongly correlated with the turnover frequency and the relatively strong magnetic field (e.g., B > 40 mG) is correlated with flux enhancements at mm wavelengths (e.g., 86 GHz).

  • PDF

Multi-scale Texture Synthesis (다중 스케일 텍스처 합성)

  • Lee, Sung-Ho;Park, Han-Wook;Lee, Jung;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.2
    • /
    • pp.19-25
    • /
    • 2008
  • We synthesize a texture with different structures at different scales. Our technique is based on deterministic parallel synthesis allowing real-time processing on a GPU. A new coordinate transformation operator is used to construct a synthesized coordinate map based on different exemplars at different scales. The runtime overhead is minimal because this operator can be precalculated as a small lookup table. Our technique is effective for upsampling texture-rich images, because the result preserves texture detail well. In addition, a user can design a texture by coloring a low-resolution control image. This design tool can also be used for the interactive synthesis of terrain in the style of a particular exemplar, using the familiar 'raise and lower' airbrush to specify elevation.

  • PDF

Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon (흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구)

  • Son, Hae-Jeong;Lim, Young-Il;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1087-1094
    • /
    • 2008
  • This article presents a multi-scale simulation approach starting from the molecular level for the adsorption process development, specifically, in n-hexane adsorption on activated carbon. A grand canonical Monte-Carlo(GCMC) method is used for the prediction of adsorption isotherms of n-hexane on activated carbon at the molecular level. Geometric effects and hydrodynamic properties of the adsorption column are examined by means of the two dimensional CFD(computational fluid dynamics) simulation. The adsorption isotherms from the molecular simulation and the axial diffusivity from the CFD simulation are exploited for the process simulation where the elution curve of n-hexane is obtained. For the first moment(mean residence time) of the pulse-response with respect to temperature and flowrate, the process simulation results obtained from this three-steps multiscale simulation approach show a good agreement with experimental data within 20% of maximum difference. The multi-scale simulation approach addressed in this study will be useful to accelerate the adsorption process development, while reducing the number of experiments required.

Design of Fuzzy Model-based Multi-objective Controller and Its Application to MAGLEV ATO system (퍼지 모델 기반 다목적 제어기의 설계와 자기부상열차 자동운전시스템에의 적용)

  • 강동오;양세현;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.211-217
    • /
    • 1998
  • Many practical control problems for the complex, uncertain or large-scale plants, need to simultaneously achieve a number of objectives, which may conflict or compete with each other. If the conventional optimization methods are applied to solve these control problems, the solution process may be time-consuming and the resulting solution would ofter lose its original meaning of optimality. Nevertheless, the human operators usually performs satisfactory results based on their qualitative and heuristic knowledge. In this paper, we investigate the control strategies of the human operators, and propose a fuzzy model-based multi-objective satisfactory controller. We also apply it to the automatic train operation(ATO) system for the magnetically levitated vehicles(MAGLEV). One of the human operator's strategies is to predict the control result in order to find the meaningful solution. In this paper, Takagi-Sugeno fuzzy model is used to simulated the prediction procedure. Another str tegy is to evaluate the multiple objectives with respect to their own standards. To realize this strategy, we propose the concept of a satisfactory solution and a satisfactory control scheme. The MAGLEV train is a typical example of the uncertain, complex and large-scale plants. Moreover, the ATO system has to satisfy multiple objectives, such as seed pattern tracking, stop gap accuracy, safety and riding comfort. In this paper, the speed pattern tracking controller and the automatic stop controller of the ATO system is designed based on the proposed control scheme. The effectiveness of the ATO system based on the proposed scheme is shown by the experiments with a rotary test bed and a real MAGLEV train.

  • PDF

Face Super-Resolution using Adversarial Distillation of Multi-Scale Facial Region Dictionary (다중 스케일 얼굴 영역 딕셔너리의 적대적 증류를 이용한 얼굴 초해상화)

  • Jo, Byungho;Park, In Kyu;Hong, Sungeun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.608-620
    • /
    • 2021
  • Recent deep learning-based face super-resolution (FSR) works showed significant performances by utilizing facial prior knowledge such as facial landmark and dictionary that reflects structural or semantic characteristics of the human face. However, most of these methods require additional processing time and memory. To solve this issue, this paper propose an efficient FSR models using knowledge distillation techniques. The intermediate features of teacher network which contains dictionary information based on major face regions are transferred to the student through adversarial multi-scale features distillation. Experimental results show that the proposed model is superior to other SR methods, and its effectiveness compare to teacher model.