무선 센서 네트워크에서 클러스터링 기법은 클러스터를 형성하여 데이터를 병합한 후 한 번에 전송해서 에너지를 효율적으로 사용하는 기법이다. 본 논문에서는 클러스터 그룹 모델을 이용한 계층적 불균형 클러스터링 기법을 제안한다. 이 기법은 전체 네트워크를 두 개의 계층으로 나누어 클러스터 그룹으로 형성된 2계층의 데이터를 병합해서 1계층으로 보내고, 다시 1계층에서 데이터를 병합하여 기지국으로 보낸다. 이와 같이 제안된 기법은 다중 홉 통신 구조와 클러스터 그룹 모델을 같이 이용함으로써 전체 에너지 소모량을 줄인다. 이러한 방식은 다중 홉 통신이지만 불균형 클러스터를 구축하여 핫 스팟 문제를 어느 정도 해결하고 있다. 실험을 통하여 제안된 계층적 불균형 클러스터링 기법이 이전의 클러스터링 기법보다 네트워크 에너지 효율이 향상되었음을 보였다.
스마트 폰의 급속한 발전과 보급으로 많은 사람들의 스마트 응용에 대한 관심이 집중되고 있으며, 다양한 관련 기술과의 융합을 통한 획기적인 모바일 응용들이 빠르게 확산되고 있는 실정이다. 특히 스마트 폰과 주변 장치들과의 일시적인 애드 혹 망을 구축하여 데이터를 교환하고 서비스하는 다양한 형태의 모바일 응용과 같은 융합 기술들이 지속적으로 등장하고 발전하고 있다. 본 논문에서는 스마트 기기의 다양한 응용을 위하여 스마트 폰의 블루투스 모듈을 이용하여 주변에 있는 센서와 같은 장치들과 일시적인 애드 혹 망을 형성하여 서로 데이터를 교환하고 서비스 할 수 있는 블루투스 기반 무선 애드 혹 센서 네트워크를 이용한 스마트 응용을 설계하고 구현하였다. 이때 제안한 스마트 응용은 2개 이상의 다중 센서로부터 획득된 데이터를 실시간으로 수집하여 그 속성에 따라 데이터베이스에 저장하고, 분석하고 처리할 수 있는 의사결정 기능을 수행한다. 본 논문에서 설계하고 구현한 스마트 응용은 스마트 폰의 블루투스 모듈을 이용하여 주변의 맥박과 체온 센서로부터 수집된 생체 데이터를 분석하여 환자의 건강상태를 결정하는 헬스 케어 어플이다.
본 논문에서는 무선 센서네트워크(wireless sensor network : WSN)에서 발생하는 두 가지 지연 요인인 큐잉 지연(queueing delay)과 랜덤 링크 스케줄링에 의한 지연(delay by random link scheduling)을 소개하고 이를 해결하기 위한 새로운 순차적 스케줄링 기법을 제안한다. 또한 모의 실험을 통하여 이용하여 제안한 다중 홉 전송기법의 성능 평가를 수행하고, 이를 기존의 랜덤 링크 스케줄링 기법의 성능과 종단간 패킷 전송 지연의 관점에서 비교한다. 모의실험 결과에 따르면, 소스 노드(source node)와 목적지 노드(destination node) 사이의 홉 수(hop distance)가 증가할수록 제안한 스케줄링 기법과 기존의 랜덤 링크 스케줄링 기법의 지연 성능 차이가 증가함을 알 수 있었다. 소스 노드와 목적지 노드 사이의 평균 홉 수가 2.66, 4.1, 4.75 및 6.3 일 때, 제안한 스케줄링 기법은 기존의 랜덤 링크 스케줄링 기법에 비해 22%, 36%, 48% 및 55% 까지 지연 시간을 줄일 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5276-5298
/
2019
Internet of Things (IoT) based sensor networks have gained unprecedented popularity in recent years. With the exponential explosion of the objects (sensors and mobiles), the bandwidth and the speed of data transmission are dwarfed by the anticipated emergence of IoT. In this paper, we propose a novel heterogeneous IoT model integrated the power line communication (PLC) and WiFi network to increase the network capacity and cope with the rapid growth of the objects. We firstly propose the mean transmission delay calculation algorithm based the 3D Markov chain according to the multi-priority of the objects. Then, the attractor selection algorithm, which is based on the adaptive behavior of the biological system, is exploited. The combined the 3D Markov chain and the attractor selection model, named MASM, can select the optimal path adaptively in the heterogeneous IoT according to the environment. Furthermore, we verify that the MASM improves the transmission efficiency and reduce the transmission delay effectively. The simulation results show that the MASM is stable to changes in the environment and more applicable for the heterogeneous IoT, compared with the other algorithms.
SDR(Software Defined Radio)은 서로 다른 무선 전달 프로토콜간의 유동적 연동을 제공할 수 있는 솔루션이다. u-health 서비스 네트워크와 같은 여러가지 전달 프로토콜을 지원하는 센서노드들로 구성될 수 있는 다종 유비쿼터스 네트워크 환경에서, 특정 노드의 전달 프로토콜을 지원하는 AP(Access Point)로의 트래픽 집중이나, 특정 노드의 전달 프로토콜을 지원하는 AP에서의 장애 발생 또는 미설치로 인한 전달불능 등이 발생할 수 있다. 본 논문에서는 SDR 기능을 가진 노드와 혼잡 제어 기능을 가진 AP를 포함하는 다종 유비쿼터스 네트워크에서의 전달성능을 분석하기 위한 모델링 및 시뮬레이션에 대한 연구결과를 제시한다. 본 연구에서는 전달 프로토콜들의 구체적인 동작과정보다는 다종 전달 프로토콜로 구성된 네트워크에서의 유동적 연동성의 제공에 따른 전체 네트워크의 전달성능의 변화특성(dynamics)을 분석하기 위하여 DEVS(Discrete Event Systems Specification)방법론을 활용하였으며, DEVS형식론에 근거한 모델링과 DEVSim++시뮬레이션환경을 통한 분석결과를 제시하였다.
최근 센서 네트워크의 활용 분야가 증가함에 따라 시스템을 효율적으로 운용하기 위한 다양한 연구들이 진행되고 있다. 대표적인 연구로 센서가 에너지를 소모하는 데 있어서 큰 비중을 차지하는 데이터 전송 비용을 줄이기 위해서 질의 최적화 기법이 연구되고 있다. 본 논문에서는 무선 센서 네트워크 환경에서 다수의 영역 질의가 발생하였을 때 질의들 간의 부분 결과를 공유함으로써 에너지 효율적인 다중 질의 처리 기법을 제안하였다. 제안하는 기법은 그리드 구조를 이용하여 직관적인 위치 판별을 가능케하여 주변 노드들과의 불필요한 메시지 전송을 줄이고, 중복된 영역을 인지함으로써 효율적인 데이터 공유가 가능하다. 제안하는 기법의 우수성을 보이기 위해 기존에 제안된 기법과 시뮬레이션을 통해 성능을 비교평가 하였다. 그 결과, 다중 질의 처리 시 발생하는 에너지 소모가 기존 기법에 비해 약 65% 감소되었다.
The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor, outlier, etc.) caused by harsh environment, sensor faults, transfer omission and other factors. These anomalies seriously affect the evaluation of structural performance. Therefore, the effective analysis and mining of SHM data is an extremely important task. Inspired by the deep learning paradigm, this study develops a novel generative adversarial network (GAN) and convolutional neural network (CNN)-based data anomaly detection approach for SHM. The framework of the proposed approach includes three modules : (a) A three-channel input is established based on fast Fourier transform (FFT) and Gramian angular field (GAF) method; (b) A GANomaly is introduced and trained to extract features from normal samples alone for class-imbalanced problems; (c) Based on the output of GANomaly, a CNN is employed to distinguish the types of anomalies. In addition, a dataset-oriented method (i.e., multistage sampling) is adopted to obtain the optimal sampling ratios between all different samples. The proposed approach is tested with acceleration data from an SHM system of a long-span bridge. The results show that the proposed approach has a higher accuracy in detecting the multi-pattern anomalies of SHM data.
Tracking the tactical object is a fundamental affair in network-equipped modern warfare. Geodetic coordinate system based on longitude, latitude, and height is suitable to represent the location of tactical objects considering multi platform data fusion. The motion of tactical object described as a dynamic model requires an appropriate filtering to overcome the system and measurement noise in acquiring information from multiple sensors. This paper introduces the filter suitable for multi-sensor data fusion and tactical object tracking, particularly the unscented transform(UT) and its detail. The UT in Unscented Kalman Filter(UKF) uses a few samples to estimate nonlinear-propagated statistic parameters, and UT has better performance and complexity than the conventional linearization method. We show the effects of UT-based filtering via simulation considering practical tactical object tracking scenario.
In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.
다양한 응용에 적용될 수 있는 특성을 가진 무선 센서 네트워크는 적용되는 응용에 따라 데이터 리포팅 지연시간의 제한과 같이 요구사항이 다양하므로 각 응용별로 구분되는 알고리즘이나 프로토콜 설계 패러다임을 적용하여 에너지 효율을 최대화하고 네트워크의 생존기간을 최대화할 수 있어야 한다. 이 논문에서는 2단계 클러스터링(Two Phase Clustering : TPC) 방식을 이용하여 에너지 효율 데이터 수집을 제공하기 위한 새로운 알고리즘으로 지연시간 적응형 센서 스케쥴링 방안을 제안한다. 이 논문의 궁극적인 목표는 센서들에게 응용 환경의 특성과 시간에 따라 변하는 특성을 갖는 지연시간에 대한 요구사항에 대하여 높은 적응성을 제공하여 네트워크의 생존기간을 늘리는 것이다. TPC 방식은 센서들이 직접 링크와 릴레이 링크의 두 가지 링크를 구성하도록 한다. 직접 링크는 제어 메시지나 시간에 민감한 센서 데이터들을 포워딩하는 데 사용된다. 릴레이 링크는 사용자의 지연시간 제한에 따라 데이터를 포워딩하는데 사용되며 이를 이용하여 센서들이 에너지-절약효과를 갖는 릴레이를 사용할 기회가 증가하도록 멀티홉 경로를 구성할 수 있도록 한다. 이 논문에서는 제안하는 CD-DGS 방식이 사용자의 지연시간 제한 요구사항에 잘 적응하여 센서 네트워크의 분포 밀도가 높은 경우에 상당한 비율의 에너지 효율을 보이는 것을 시뮬레이션 결과로 증명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.