• Title/Summary/Keyword: multi-sensor information fusion

Search Result 116, Processing Time 0.027 seconds

Design of ESN(Educational Sensor Network) for interpretation of the data

  • Park, In-Deok;Paek, Seung-Eun;Kim, Si-Kyung
    • The Journal of Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper has focused on the development of an educational sensor network (ESN) based on wireless sensor networks(WSN) and pervasive monitoring systems for students' activity during scientific experiments. A number of WSN systems have been proposed with integrated wireless transmission, mounted sensor boards and local processing. However, there is no trail to employ WSN on the educational field. In this paper, to facilitate research and development using wireless sensor network and multi-sensor data fusion, the educational sensor network (ESN) hardware development platform is presented. The ESN project is conducted over one semester time period (Spring Semesters). It involves approximately twenty middle school students who enrolled a gifted program in Kongju National University. Though under prepared, these students are in general highly motivated to learning specially when presented with the ESN project. An ESN project such as this is expected to provide an excellent means for teaching and learning scientific and mathematical principles.

  • PDF

Multi-sensor Fusion Based Guidance and Navigation System Design of Autonomous Mine Disposal System Using Finite State Machine (유한 상태 기계를 이용한 자율무인기뢰처리기의 다중센서융합기반 수중유도항법시스템 설계)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Lee, Chong-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • This research propose a practical guidance system considering ocean currents in real sea operation. Optimality of generated path is not an issue in this paper. Way-points from start point to possible goal positions are selected by experienced human supervisors considering major ocean current axis. This paper also describes the implementation of a precise underwater navigation solution using multi-sensor fusion technique based on USBL, GPS, DVL and AHRS measurements in detail. To implement the precise, accurate and frequent underwater navigation solution, three strategies are chosen. The first one is the heading alignment angle identification to enhance the performance of standalone dead-reckoning algorithm. The second one is that absolute position is fused timely to prevent accumulation of integration error, where the absolute position can be selected between USBL and GPS considering sensor status. The third one is introduction of effective outlier rejection algorithm. The performance of the developed algorithm is verified with experimental data of mine disposal vehicle and deep-sea ROV.

Intelligent Hexapod Mobile Robot using Image Processing and Sensor Fusion (영상처리와 센서융합을 활용한 지능형 6족 이동 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • A intelligent mobile hexapod robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Specialized Product-Line Development Methodology for Developing the Embedded System

  • Hong Ki-Sam;Yoon Hee-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.268-273
    • /
    • 2005
  • We propose the specialized product-line development methodology for developing the embedded system of an MSDFS (Multi Sensor Data Fusion System : called MSDFS). The product-line methodology provides a simultaneous design between software and hardware, high level reusability. However this is insufficient in requirement analysis stage due to be focused on software architecture, detailed design and code. Thus we apply the business model based on IDEF0 technique to traditional methodology. In this paper, we describe the processes of developing Core-Asset, which are requirement analysis, feature modeling, validation. The proposed model gives the efficient result for eliciting features, and ensures the high level reusability of modules performing on embedded system.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

A Study on a Information Fusion Architecture of Avionics Realtime Track and Tactical Data Link (항공기 센서 실시간 항적 정보와 항공전자 전술데이터링크 정보융합 구조 연구)

  • Kang, Shin-Woo;Lee, Young Seo;Park, Sang-Woong;Ahn, Tae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.325-330
    • /
    • 2022
  • The sensors of aircraft are necessity for mission performance and fusion process of data from them is applied for increase of mission efficiency and decrease of aircraft pilot workload. Data fusion is applied and developed to provide pilot a series of more processed data format about a specific target from sensors in aircraft. Military aircraft currently in operation are linked with a tactical data link such as Link-16 to display improved tactical situation to pilots to increase mission efficiency. By fusing the sensor data with improved accuracy obtained as the sensors' performance mounted on the aircraft become higher and the tactical situation information received through the tactical data link, it provides the pilot with a highly reliable tactical situation and mission environment, and expects efficient mission performance and high survivability. In this paper, a fusion architecture to produce fused data with realtime information from the sensors and data through a tactical data link is shown.

A Tracking Algorithm for Autonomous Navigation of AGVs: Federated Information Filter

  • Kim, Yong-Shik;Hong, Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.635-640
    • /
    • 2004
  • In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) operating in container terminals is presented. The developed navigation algorithm takes the form of a federated information filter used to detect other AGVs and avoid obstacles using fused information from multiple sensors. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. It is proved that the information state and the information matrix of the suggested filter, which are weighted in terms of an information sharing factor, are equal to those of a centralized information filter under the regular conditions. Numerical examples using Monte Carlo simulation are provided to compare the centralized information filter and the proposed one.

Pedestrian crosswalk fused sensor data and time information in the Safety Assistive systems research (센서 데이터 및 시간 정보를 융합한 횡단보도 내 보행자 안전 보행 보조 시스템 연구)

  • Lim, Shin-Teak;Park, Jong-Ho;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6040-6045
    • /
    • 2012
  • In this study, by utilizing the information fusion of multi sensor data and time within the crosswalk safety Assistive gait secondary to the safety of pedestrians on the system design and system performance verification through support to. Environmental awareness, and time information in addition to leveraging the default behavior for pedestrian safety design of the secondary system performed a study on the scenario and the behavior of a system for fuzzy control was performed for each sensor data processing, median filtering, including filters processing leveraging, and was attached by the time we complete the final algorithm, the system behavior. In addition, taking advantage of the sensor measurements, so basically uncertainties and sensor results, and you want to give at least the reliability of the data fusion experiment equipment using this simple verification.

The Design and Implementation for Efficient C2A (효율적인 방공 지휘통제경보체계를 위한 설계 및 구현)

  • Kwon, Cheol-Hee;Hong, Dong-Ho;Lee, Dong-Yun;Lee, Jong-Soon;Kim, Young-Vin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.733-738
    • /
    • 2009
  • In this paper, we have proposed the design and implementation for efficient Command Control and Alert(C2A). Information fusion must be done for knowing the state and identification of targets using multi-sensor. The threat priority of targets which are processed and identified by information fusion is calculated by air-defence operation logic. The threat targets are assigned to the valid and effective weapons by nearest neighborhood algorithm. Furthermore, the assignment result allows operators to effectively operate C2A by providing the operators with visualizing symbol color and the assignment pairing color line. We introduce the prototype which is implemented by the proposed design and algorithm.