• Title/Summary/Keyword: multi-rooted teeth

Search Result 14, Processing Time 0.018 seconds

A novel method of objectively detecting tooth ankylosis using cone-beam computed tomography: A laboratory study

  • Luciano Augusto Cano Martins;Danieli Moura Brasil;Deborah Queiroz Freitas;Matheus L Oliveira
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • Purpose: The aim of this study was to objectively detect simulated tooth ankylosis using a novel method involving cone-beam computed tomography (CBCT). Materials and Methods: Tooth ankylosis was simulated in single-rooted human permanent teeth, and CBCT scans were acquired at different current levels (5, 6.3, and 8 mA) and voxel sizes (0.08, 0.125, and 0.2). In axial reconstructions, a line of interest was perpendicularly placed over the periodontal ligament space of 21 ankylosed and 21 non-ankylosed regions, and the CBCT grey values of all voxels along the line of interest were plotted against their corresponding X-coordinates through a line graph to generate a profile. The image contrast was increased by 30% and 60% and the profile assessment was repeated. The internal area of the resulting parabolas was obtained from all images and compared between ankylosed and non-ankylosed regions under different contrast enhancement conditions, voxel sizes, and mA levels using multi-way analysis of variance with the Tukey post hoc test(α=0.05). Results: The internal area of the parabolas of all non-ankylosed regions was significantly higher than that of the ankylosed regions(P<0.05). Contrast enhancement led to a significantly greater internal area of the parabolas of non-ankylosed regions (P<0.05). Overall, voxel size and mA did not significantly influence the internal area of the parabolas(P>0.05). Conclusion: The proposed novel method revealed a relevant degree of applicability in the detection of simulated tooth ankylosis; increased image contrast led to greater detectability.

MORPHOLOGIC ANALYSIS OF C-SHAPED ROOT USING 3-D RECONSTRUCTION (3차원 재구성법에 의한 C-shaped root의 형태분석)

  • Jung, Eun-Hee;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.421-431
    • /
    • 2002
  • C-shaped canal configuration is very difficult to treat because that clues about preoperative canal anatomy cannot be ascertained from clinical crown morphology and limited information can be derived from radiographic examination. This study was done to get more informations about the root and canal configuration of C-shape root by 3-dimensionally reconstructing for the purpose of enhancing success rate of endodontic treatment. 30 mandibular molars with C-shaped root were selected. Six photo images from occlusal, apical, mesial, distal, buccal, lingual directions and radiographic view were taken as preoperative ones to compare them with 3-D image. After crown reduction to the level of 1-2mm over pulpal floor was performed, teeth were stored in 5.25% sodium hypochlorite solution for the removal of pulp tissue and debris. They were cleaned under running water, allowed to bench dry and embedded in a self-curing resin. This resin block was serially ground with a microtome (Accutom-50, Struers, Denmark) and the image of each level was recorded by digital camera (FinePix S1-pro, Fuji Co., Japan). The thickness of each section was 0.25mm. Photographs of serial sections through all root canal were digitized using Adobe Photoshop 5.0 and then minimum thickness of open and closed sites were measured (open site is the surface containing occluso-apical groove closed site is oppsite). After dizitization using 3-D Doctor (Able software Corp, USA). 3D reconstruction of the outer surface of tooth and the inner surface of pulp space was made. Canal classsification of C-shaped roots was performed from this 3-D reconstructed image. The results were as follows : 1. Most C-shape rooted teeth showed lingual groove (28/30). 2 According to Vertuccis' calssification, type I, II, III, IV, VII were observed. but also new canal types suck as 2-3-2, 1-2-3-2. 2-3-2-1, 2-3-2-3 were shown. 3 There was little difference in minimum thickness on coronal and apical portions, but open site were thinner than closed site on mid portion. Conclusively, 3D reconstruction method could make the exact configurations of C-shape root possible to be visualized and analyzed from multi-directions. Data from minimum thickness recommend cleaning and shaping be more carefully done on dangerous mid portion.

Analysis of Prevalence of Pyramidal Molars in Adolescent (청소년들에서 pyramidal molar 유병률의 분석)

  • Kwon, Woojin;Choi, Hyung-Jun;Lee, Jaeho;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.4
    • /
    • pp.389-396
    • /
    • 2020
  • A pyramidal molar is which has completely fused roots with a solitary enlarged canal. The purpose of this retrospective study was to assess the prevalence and characteristics of pyramidal molars among adolescent. A total of 1,612 patients' panoramic radiographs were screened. A total of 12,896 first and second molars were evaluated. The relative incidence and the correlations regarding the location of pyramidal molar (maxillary versus mandibular) and gender were analyzed using the chi-square test. The overall incidence of patients with pyramidal molars was 1.49%. 24 patients were found to have a pyramidal molar and it was more prevalent in women (18 women and 6 men). The prevalence of pyramidal molars from all first and second molars examined was 0.31%. 88 percent of pyramidal molars occurred in maxilla. All pyramidal molars were second molar. Pyramidal molar has a relatively poor periodontal prognosis compared with common multi-rooted teeth and it is important to understand the structural characteristics of root canal during pulp treatment. Clinicians should be able to understand the anatomical properties of pyramidal molar and apply it to treatment and prognostic evaluation.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.