• Title/Summary/Keyword: multi-resonance

Search Result 421, Processing Time 0.027 seconds

The Effect of Nuclear Overhauser Enhancement in Liver and Heart $^{31}P$ NMR Spectra Localized by 2D Chemical Shift Technique (이차원 화학변위 기법을 이용한 간 및 심장 $^{31}P$ 자기공명분광에서의 Nuclear Overhauser 효과에 대한 연구)

  • Ryeom Hun-Kyu;Lee Jongmin;Kim Yong-Sun;Lee Sang-Kwon;Suh Kyung-Jin;Bae Sung-Jin;Chang Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Purpose : To investigate the signal enhancement ratio by NOE effect on in vivo $^{31}P$ MRS in human heart muscle and liver. we also evaluated the enhancement ratios of different phosphorus metabolites, which are important in 31P MRS for each organ. Materials and Methods : Ten normal subjects (M:F = 8:2, age range = 24-32 yrs) were included for in vivo $^{31}P$ MRS measurements on a 1.5 T whole-body MRI/MRS system using $^1H-^{31}P$ dual tuned surface coil. Two-dimensional Chemical Shift Imaging (2D CSI) pulse sequence for $^{31}P$ MRS was employed in all $^{31}P$ MRS measurements. First, $^{31}P$ MRS performed without NOE effect and then the same 2D CSI data acquisitions were repeated with NOE effect. After postprocessing the MRS raw data in the time domain, the signal enhancements in percent were estimated from the major metabolites. Results : The calculated NOE enhancement for liver $^{31}P$ MRS were $\alpha-ATP\;(7\%),\;\beta-ATP\;(9\%),\;\gamma-ATP\;(17\%),\;Pi\;(1\%),\;PDE\;(19\%)$ and $PME\;(31\%)$. Because there is no creatine kinase activity in liver, PCr signal is absent. For cardiac $^{31}P$ MRS, whole body coil gave better scout images and thus better localization than surface coil. In $^{31}P$cardiac multi-voxel spectra, DPG signal increased from left to right according to the amount of blood included. The calculated enhancement for cardiac $^{31}P$ MRS were : $\alpha-ATP\;(12\%),\;\beta-ATP\;(19\%),\;\gamma-ATP\;(30\%),\;PCr\;(34\%),\;Pi\;(20\%),\;(PDE)\;(51\%),\;and\;DPG\;(72\%)$. Conclusion : Our results revealed that the NOE effect was more pronounced in heart muscle than in liver with different coupling to 1H spin system and thus different heteronuclear cross-relaxation.

  • PDF

Evaluation of Renal Oxygenation in Normal Korean Volunteers Using 3.0 T Blood Oxygen Level-Dependent MRI (3.0 T 혈중산소치의존 자기공명영상을 이용한 정상한국인에서의 신장 산소공급의 평가)

  • Hwang, Sung Il;Lee, Hak Jong;Chin, Ho Jun;Chae, Dong-Wan;Na, Ki Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • Purpose : Renal blood oxygen level-dependent (BOLD) MRI has been used in the evaluation of renal oxygenation. We tried to provide the normal $R2^*$ value of the human kidney with 3.0 T, and evaluated the differences in $R2^*$ values according to gender and location. Materials and Methods: Twenty-four healthy volunteers underwent BOLD MRI at 3.0 T. Multi gradient echo-echo planar imaging sequence with seventeen echoes was used. After generation of the $T2^*$ map, the $R2^*$ was calculated. The statistical differences in $R2^*$ values between the cortex and medulla, males and females, and the right and left kidney were analyzed. The regional differences of $R2^*$ within the both kidneys were evaluated respectively. Results: BOLD MRI was successful in all participants. No gross artifact interfered with $R2^*$ measurement. The mean $R2^*$ at 3.0 T was $17.1{\pm}2.60s^{-1}$ in the cortex and $27.7{\pm}4.83s^{-1}$ in the medulla (p < 0.001). The $R2^*$ value in the medulla was significantly higher in the male than female volunteers (p = 0.025). There were no statistical differences of $R2^*$ according to the side and location in the kidney (p = 0.197). Conclusion: Renal BOLD MRI can be efficiently performed with 3.0 T MRI. Renal medullary hypoxia is present in normal volunteers. Our results may be used as reference values in the evaluation of pathologic conditions using BOLD MRI.

Multi-Component Relaxation Study of Human Brain Using Relaxographic Analysis (Relaxographic 분석법을 이용한 뇌의 다중 자기이완특성에 관한 연구)

  • Yongmin Chang;Bong Soo Han;Bong Seok Kang;Kyungnyeo Jeon;Kyungsoo Bae;Yong-Sun Kim;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2002
  • Purpose : To demonstrate that the relaxographic method provides additional information such as the distribution of relaxation times and water content which are poentially applicable to clinical medicine. Materials and Methods : First, the computer simulation was performed with the generated relaxation data to verify the accuracy and reliabilility of the relaxographic method (CONTINI). Secondly, in or der to see how well the CONTIN quantifies and resolves the two different ${T_1}$ environments, we calculated the oil to water peak area ratios and identified peak positions of ${T_1}-distribution$ curve of the phantom solutions, which consist of four centrifugal tubes (10 ml) filled with the compounds of 0, 10, 20, 30% of corn oil and distilled water, using CONTIN. Finally, inversion recovery MR images for a volunteer are acquired for each TI ranged from 40 to 1160 msec with TR/TE=2200/20 msec. From the 3 different ROIs (GM, WM, CSF), CONTIN analysis was performed to obtain the ${T_1}$-distribution curves, which gave peak positions and peak area of each ROI location. Results : The simulation result shows that the errors of peak positions were less in the higher peak (centered ${T_1}=600$ msec) than in the lower peak (centered ${T_1}=150$ msec) for all SNR but the errors of peak areas were larger in the higher peak than in the lower peak. The CONTIN analysis of the measured relaxation data of phantoms revealed two peaks between 20 and 60 msec and between 500 and 700 msec. The analysis gives the peak area ratio as oil 10%: oil 20%: oil 30% = 1:1.3:1.9, which is different from the exact ratio, 1:2:3. For human brain, in ROI 3 (CSF), only one component of -distributions was observed whereas in ROI 1(GM) and in ROI 2 (WM) we observed two components of ${T_1}-distribution$. For the WM and CSF there was great agreement between the observed ${T_1}-relaxation$ times and the reported values. Conclusion : we demonstrated that the relaxographic method provided additional information such as the distribution of relaxation times and water content, which were not available in the routine relaxometry and ${T_1}/{T_2}$ mapping techniques. In addition, these additional information provided by relaxographic analysis may have clinical importance.

  • PDF

Unenhanced Breast MRI With Diffusion-Weighted Imaging for Breast Cancer Detection: Effects of Training on Performance and Agreement of Subspecialty Radiologists

  • Yeon Soo Kim;Su Hyun Lee;Soo-Yeon Kim;Eun Sil Kim;Ah Reum Park;Jung Min Chang;Vivian Youngjean Park;Jung Hyun Yoon;Bong Joo Kang;Bo La Yun;Tae Hee Kim;Eun Sook Ko;A Jung Chu;Jin You Kim;Inyoung Youn;Eun Young Chae;Woo Jung Choi;Hee Jeong Kim;Soo Hee Kang;Su Min Ha;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.11-23
    • /
    • 2024
  • Objective: To investigate whether reader training improves the performance and agreement of radiologists in interpreting unenhanced breast magnetic resonance imaging (MRI) scans using diffusion-weighted imaging (DWI). Materials and Methods: A study of 96 breasts (35 cancers, 24 benign, and 37 negative) in 48 asymptomatic women was performed between June 2019 and October 2020. High-resolution DWI with b-values of 0, 800, and 1200 sec/mm2 was performed using a 3.0-T system. Sixteen breast radiologists independently reviewed the DWI, apparent diffusion coefficient maps, and T1-weighted MRI scans and recorded the Breast Imaging Reporting and Data System (BI-RADS) category for each breast. After a 2-h training session and a 5-month washout period, they re-evaluated the BI-RADS categories. A BI-RADS category of 4 (lesions with at least two suspicious criteria) or 5 (more than two suspicious criteria) was considered positive. The per-breast diagnostic performance of each reader was compared between the first and second reviews. Inter-reader agreement was evaluated using a multi-rater κ analysis and intraclass correlation coefficient (ICC). Results: Before training, the mean sensitivity, specificity, and accuracy of the 16 readers were 70.7% (95% confidence interval [CI]: 59.4-79.9), 90.8% (95% CI: 85.6-94.2), and 83.5% (95% CI: 78.6-87.4), respectively. After training, significant improvements in specificity (95.2%; 95% CI: 90.8-97.5; P = 0.001) and accuracy (85.9%; 95% CI: 80.9-89.8; P = 0.01) were observed, but no difference in sensitivity (69.8%; 95% CI: 58.1-79.4; P = 0.58) was observed. Regarding inter-reader agreement, the κ values were 0.57 (95% CI: 0.52-0.63) before training and 0.68 (95% CI: 0.62-0.74) after training, with a difference of 0.11 (95% CI: 0.02-0.18; P = 0.01). The ICC was 0.73 (95% CI: 0.69-0.74) before training and 0.79 (95% CI: 0.76-0.80) after training (P = 0.002). Conclusion: Brief reader training improved the performance and agreement of interpretations by breast radiologists using unenhanced MRI with DWI.

Feasibility study of the beating cancellation during the satellite vibration test

  • Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • The difficulties of satellite vibration testing are due to the commonly expressed qualification requirements being incompatible with the limited performance of the entire controlled system (satellite + interface + shaker + controller). Two features cause the problem: firstly, the main satellite modes (i.e., the first structural mode and the high and low tank modes) are very weakly damped; secondly, the controller is just too basic to achieve the expected performance in such cases. The combination of these two issues results in oscillations around the notching levels and high amplitude beating immediately after the mode. The beating overshoots are a major risk source because they can result in the test being aborted if the qualification upper limit is exceeded. Although the abort is, in itself, a safety measure protecting the tested satellite, it increases the risk of structural fatigue, firstly because the abort threshold has been already reached, and secondly, because the test must restart at the same close-resonance frequency and remain there until the qualification level is reached and the sweep frequency can continue. The beat minimum relates only to small successive frequency ranges in which the qualification level is not reached. Although they are less problematic because they do not cause an inadvertent test shutdown, such situations inevitably result in waiver requests from the client. A controlled-system analysis indicates an operating principle that cannot provide sufficient stability: the drive calculation (which controls the process) simply multiplies the frequency reference (usually called cola) and a function of the following setpoint, the ratio between the amplitude already reached and the previous setpoint, and the compression factor. This function value changes at each cola interval, but it never takes into account the sensor signal phase. Because of these limitations, we firstly examined whether it was possible to empirically determine, using a series of tests with a very simple dummy, a controller setting process that significantly improves the results. As the attempt failed, we have performed simulations seeking an optimum adjustment by finding the Least Mean Square of the difference between the reference and response signal. The simulations showed a significant improvement during the notch beat and a small reduction in the beat amplitude. However, the small improvement in this process was not useful because it highlighted the need to change the reference at each cola interval, sometimes with instructions almost twice the qualification level. Another uncertainty regarding the consequences of such an approach involves the impact of differences between the estimated model (used in the simulation) and the actual system. As limitations in the current controller were identified in different approaches, we considered the feasibility of a new controller that takes into account an estimated single-input multi-output (SIMO) model. Its parameters were estimated from a very low-level throughput. Against this backdrop, we analyzed the feasibility of an LQG control in cancelling beating, and this article highlights the relevance of such an approach.

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Functional Results of Soft Palate Defect Reconstruction using Radial Forearm Free Flap after Tonsil Cancer Surgery (편도암 절제술후 전완유리피판술을 이용한 연구개 결손부 재건의 기능적 결과)

  • Kim, Min-Sik;Sun, Dong-Il;Park, Hae-Sup;Cho, Seung-Ho;Jai, Hyeon-Soon
    • Korean Journal of Bronchoesophagology
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 1999
  • Background and Objective : Soft palate plays a great role in function of speech and swallowing. Ablation of tonsil cancer results in multi-demensional defect including soft palate in most cases and restoration of the postoperative oral cavity function is a continuing surgical challenge. Although a variety of techniques are available, radial forearm free flap has been known as an effective method for these defect, which offers a thin, pliable, and relatively hairless skin, and a long vascular pedicle. The aim of the present study is to report the speech and swallowing function test results of our 5 consecutive radial forearm free flaps used for tonsil cancers. Materials and Methods : We reviewed the medical records of 5 patients who were offered intraoral reconstruction with a radial forearm free flap after ablative surgery for tonsil cancers, from Dec. 1997 to Oct. 1998, and analyzed the surgical methods, complications, and speech and swallowing function test results. We have examined with modified barium swallow to evaluate postoperative wallowing function and articulation and resonance test for speech. Results : The tumor sizes by TNM stage(AJCC, 1997) were T1(1), T2(2), and T4(3). The paddles of flaps were tailored in multilobed designs from oval shape to pentalobed design and in variable size from 24$cm^2$ to 108$cm^2$(average size = 78.4$cm^2$), according to the defect after ablation. This procedures resulted in satisfactory flap success and functional results all but 1 case of flap contracture in 2 postoperative week, achieved early oral diet until 16-57 postoperative day(average, 28 days) and social speech. The oropharyngeal defect including soft palate reconstruction with radial forearm free flap might be an excellent method for the maximal functional results, after ablative surgery of tonsil cancer that results in multidimensional defect.

  • PDF

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

3-Dimensional Computed Tomography of Atlantoaxial Instability in Three Dogs (개에서 컴퓨터단층영상의 3차원 재구성을 통한 환축추골 아탈구 진단 3례)

  • Ahn, Se-Joon;Choi, Soo-Young;Lim, Soo-Ji;An, Ji-Young;Lee, In;Kwon, Young-Hang;Choi, Ho-Jung;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.26 no.5
    • /
    • pp.490-494
    • /
    • 2009
  • A 2-year-old Maltese and a 5-month-old Yorkshire terrier were presented with ataxia. Tetraparesis was observed in a 9-year -old Yorkshire terrier. The localizations of the lesions suggested brain or cervical spinal cord by the neurological examination, and the following images was achieved: radiography, axial images of computed tomography (CT), reconstruction image of CT such as multi-planar reformation(MPR) and 3-dimensional(3D) reconstruction and magnetic resonance imaging (MRI). On radiography, the misalignment between atlas (C1) and axis (C2), absent dens of axis, and increased space between the dorsal arch of C1 and spinous process of C2 were found. The discontinuation between dens and body of C2 was identified through axial CT images, and the fragmentation of dens separated from axis was observed through MPR and 3D image in all case. The hyperintense lesions and the spinal cord compression on T2-weighted MR images were represented in a dog with tetraparesis, the others represented only spinal cord compression. Three dogs were diagnosed as atlantoaxial instability (AAI) by dens fracture of C2. The dog with tetraparesis was euthanized due to guarded prognosis. The others were recovered completely. It is difficult to differentiate dens fracture of C2 from abnormal dens such as agenesis and hypoplasia. We thought that CT is very useful to evaluate the dens of C2 and differentiate the causes of AAI, and the reconstruction images of CT such as MPR and 3D make the translation of the fragmented dens or axis of AAI more precisely evaluate.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF