• Title/Summary/Keyword: multi-resonance

Search Result 421, Processing Time 0.024 seconds

Sliding Conditions at the Interface between Soil and Underground Structure (지반과 지하구조물 경계의 미끄러짐 조건에 관한 연구)

  • 김대상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • By focusing on the resonant vibration mode of soil-underground structure system, this paper obtained dynamic soil stiffness and easy sliding conditions at the interface between soil and underground structure. Multi-step method is employed to isolate two primary causes of soil-structure interaction. Mohr-Coulomb criterion is used to determine the threshold level of the sliding. To find out the conditions the interface slides easily, parametric studies are performed about the factors governing sliding, which are the size and location of underground structures, ground condition, the configuration of surface deposit and interface friction coefficients.

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites (점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발)

  • Kim, Jae Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.

Simultaneous Switching Noise Reduction Technique in Multi-Layer Boards using Conductive Dielectric Substrate (전도성 유전기판을 이용한 다층기판에서의 Simultaneous Switching Noise 감소 기법)

  • 김성진;전철규;이해영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.9-14
    • /
    • 1999
  • In this paper, we proposed a simultaneous switching noise (SSN) reduction technique in multi-layer boards (MLB) for high-speed digital applications and analyzed it using the Finite Difference Time Domain (FDTD) method. The new structure using conductive dielectric substrates is effective for the reduction of SSN couplings and resonances. The uniform insertion of the conducive layer reduced the SSN coupling and resonance by 85% and the partial insertion only around the edges reduced by 55% respectively.

  • PDF

Design of Multi-band Ceramic Chip Antenna for WLAN using LTCC Technology (LTCC 공정기술을 이용한 무선랜용 다중대역 칩 안테나 설계)

  • 박영호;이용기;이윤도;이상원;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.443-446
    • /
    • 2004
  • In this paper, a multi-band ceramic chip antenna for WLAN(Wireless LAN) applications is designed. The design target is to obtain 0 dBi of coverage gain with omni directional radiation pattern. The antenna is fabricated using Low Temperature Co-fired Ceramic(LTCC) technology. The size of the chip antenna is $2.2{\times}9.65{\times}1.02$mm. The measured antenna gain is 1 dBi at 2.44 GHz and 0.5 dBi at 5.5 GHz. The omni directional radiation pattern for the two operating bands is obtained. The measured bandwidth(S11=-10 dB) are 90 MHz at 2.44 GHz and 1280 MHz at 5.5 GHz respectively

Ultra-wideband BSF Using Multi-stage FSCS (다단 FSCS를 이용한 초광대역 특성의 대역저지 필터)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.439-444
    • /
    • 2020
  • In this paper, the analysis of the FSCS (frequency-selected coupling structure) as the coupling coefficient and multi-stage FSCS for enhanced bandstop bandwidth is suggested. The FSCS is composed by the connected coupled-line and open-stub. Basically, the resonance frequency of the FSCS is given by the electrical length of the stub, and the bandwidth is controlled by the coupling coefficient. Multi-stage FSCS is made by addition of another FSCS with the half electrical length. Manufactured bandstop filter using 3 stage FSCS is measured with the stopband of 177.3% and the maximum return loss of 1dB.

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate Considering the Noise of Multi-bubbles (다중기포 발생소음을 고려한 무한평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Heo, Bo-Hyun;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1222-1230
    • /
    • 2009
  • A theoretical model was developed to compute the effect of a bubble layer in reducing the radiation noise generated by a force applied on an infinite flat plate considering the noise of multi-bubbles. Using the model, the effectiveness of a bubble layer in reducing the structure-borne noise of the plate was evaluated to consider various parameters such as the source noise levels, the thickness of bubble layers, the volume fractions and the frequency characteristics of bubbly fluids. Considering the noise of multi-bubbles, the actual reduction effect of radiation noise using a bubble layer was expected in cases of high source levels, high volume fractions of bubbles and large thickness of the bubble layer above the resonance frequency of the bubble layer. Accordingly, it is recommended that the thickness of a bubble layer, the source noise level and the characteristics of bubbly fluids should be optimized cautiously to maximize noise reduction effects.

Multi-directionally Movable Lambda Shape Transducer for Ultrasonic Motor (초음파 모터용 람다형 다방향 변환자)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The transducer for multi-directionally movable ultrasonic motor having lambda shaped vibrators has been proposed and designed. The two branches cross at a right angle with each other at the tip. FEM analyses of lambda shaped transducer were carried out to find vibration modes for ultrasonic motor. The lambda shaped transducer has one symmetric mode and two anti-symmetric modes. The symmetric mode generates the normal direction motion of the tip. The lateral and vertical direction motion of the tip are excited by two anti-symmetric modes. The normal and lateral direction motions made an lateral elliptic trajectory. And the normal and vertical direction motions made an vertical elliptic trajectory normal to previous one. The transducer with 1 mm in thickness and 25 mm in length has been fabricated and evaluated. The resonance frequencies of the transducer was 32 kHz and 103 kHz. The tangential and vertical vibration displacement of the transducer having the lateral elliptic trajectory were $1.5{\mu}m\;and\;1.1{\mu}m$, respectively at the driving voltage of 100 Vpp and frequency of 32 kHz and 103 kHz. And the tangential and vertical vibration displacement of the transducer having the vertical elliptic trajectory were $0.4{\mu}m\;and\;0.2{\mu}m$, respectively at the same driving condition.

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

Magnetic Resonance Imaging for Each Type of Herniated Lumbar Intervertebral Disc (요추 추간판 탈출증의 유형별 자기공명영상 소견)

  • Kim, Ham-Gyum
    • Journal of radiological science and technology
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • The classification of herniated intervertebral lumbar disc type is clinically important, as treatment method may be slightly different according to the type of herniated intervertebral disc. When 450 patients who suffered from herniated intervertebral lumbar disc were tested with Magnetic Resonance Imaging (MRI) to find out the type of herniated disc, the following findings were given : 1. The age of the patients investigated ranged from 15 to 83, and their mean age was 40. 2. The male patients were twice as many as the female patients, since the ratio of males to females was 300 : 150. 3. 118 patients suffered from a single herniated disc, and 332 patients were attacked with multi-herniated disc. 4. The types of single herniated disc were a protrusion for 50 patients (40%) and an extrusion for 40 patients (34%). The part of being herniated was an intervertebral disc between $L_4-L_5$ for 95 patients(80%) and the same disc between $L_5-S_1$ for 22 patients(19%). 5. The types of multi : -herniated disc were an protrusion for 67 patients(20%) and an extrusion for 70 patients(21%). Besides, 90 patients (28%) were the case that protrusion and extrusion coexisted simultaneously. The parts of being herniated were $L_3-L_4,\;L_4-L_5$ and $L_5-S_1$ for 53 patients(16%), $L_3-L_4$ and $L_4-L_5$ for 57 patients(17%), and $L_4-L_5$ and $L_5-S_1$ for 139 patients(42%).

  • PDF