• Title/Summary/Keyword: multi-resonance

Search Result 421, Processing Time 0.022 seconds

The Multi-Frequency NMR Relaxation and EPR Study of Nano-sized Iron Oxide

  • 황문정;이영주;이일수;장용민
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.129-129
    • /
    • 2002
  • 목적: 초상자성 nano 산화철 입자의 특성을 연구하기 위하여, 여러 다른 자기장 세기에서의 NMR 자기공이완시간(T1/T2)을 측정하고, 초상자성 nano-particle 조영제의 기전에 관한 모델로부터 얻어 진 계산식과 비교해보며, 다양한 온도에서의 EPR spectrum을 이용하여 이들의 전자적 성질을 비교해 보고자 하였다.

  • PDF

Multi-Band Internal Chip Antenna Using Multi-Layer Substrate for Mobile Handset (Multi-Layer 구조를 사용한 다중 대역 내장형 칩 안테나)

  • Cho, Sang-Hyeok;Cho, Il-Hoon;Lee, In-Young;Pyo, Seong-Min;Baik, Jung-Woo;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.778-784
    • /
    • 2008
  • In this paper, a chip antenna using multi-layer configuration for multi-band operation, such as GSM, DCS, pcs, WCDMA, and Mobile WiMAX for 2.3 GHz is proposed. This proposed antenna is a PIFA structure with multi-layer configuration fabricated on R04003 substrate(${\varepsilon}_r=3.4$) and its size is $22{\times}5.5{\times}4.0\;mm^3$. Multi-layer structure can effectively reduce the size of an antenna from a reuse of air-space and can achieve broad bandwidth due to decrement of parallel capacitances from the insertion air-gap to the middle layer. The proposed antenna has a broadband operation by the high order resonance modes and the resonance at the top layer. The measured bandwidths with over 45 % radiation efficiency are 80 MHz($880{\sim}960\;MHz$) at the lower band and 690 MHz($1,710{\sim}2,400\;MHz$) at the higher band.

A study on the Design and Fabrication of Microstrip Array Antenna for Ultra Wideband Applications (초광대역 마이크로스트립 안테나의 설계와 제작에 관한 연구)

  • Ham, Min-Su;Choi, Byung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.503-507
    • /
    • 2007
  • In this paper, the ultra-widebend, microstrip patch antenna with the bandwidth of 3 GHz was implemented for ultra-wideband(UWB) wireless communication applications. In order to cover the very wide bandwidth of 3 GHz, a multi-resonance antenna was designed, each resonance frequency was separated into five frequency bend, 7.5, 8.1, 8.7, 9.3, and 9.9GHz with the interval of 600MHz BW. And for wideband characteristics of each antenna, U-slot antennas were designed at each center frequency. Designed five U-slot antennas were connected in series for multi-resonance of 3GHz BW and wideband matching was also designed for impedance matching transmission line calculated. The relative dielectric constant, the height, the loss tangent of the PCB substrate were ${\epsilon}_r=4.8,\;h=0.6$ and loss tangent=0.0009 respectively. The implemented antenna's radiation patterns and gain were directivity characteristics and $1.46{\sim}4.08dBi$ at the five separated center frequency.

A Study on the Fundamental Surge Frequencies in Multi-Stage Axial Flow Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.160-173
    • /
    • 2014
  • Surge phenomena in multi-stage axial flow compressors were studied with attention to the frequency behaviors. A new parameter "volume-modified reduced surge frequency" was introduced, which took into consideration the essential surge process, i.e., emptying and filling of the working gas in the delivery plenum. The behaviors of the relative surge frequencies at the stall stagnation boundaries, compared with the corresponding duct resonance frequencies, have demonstrated the existence of two types of surges; i.e., a near-resonant surge and a subharmonic surge. The former, which has fundamentally a near-resonance frequency, occurs predominantly at the stall stagnation boundary for the short -and-fat plenum delivery flow-path and the long-and-narrow delivery duct flow-path, and possibly in the intermediate conditions. The latter, which has a subharmonic frequency of the fundamental near-resonant one and occurs mainly in the intermediate zone, is considered to be caused by the reduced frequency restricted to a limited range. In relation with those dimensionless frequencies at the stall stagnation boundary, the surge frequency behaviors in more general situations away from the boundaries could be estimated, though very roughly.

Magnetic Resonance Imaging for Each Type of Herniated Cervical Intervertebral Disc (경추 추간판 탈출증의 유형별 자기공명영상 소견)

  • Kim, Ham-Gyum
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 2000
  • The classification of herniated intervertebral cervical disc types are clinically important, as treatment methods would be slightly different according to the specific type of the herniated disc. 423 patients who suffered from herniated intervertebral cervical discs were tested with Magnetic Resonance Imaging (MRI), to distinguish the type of the herniated discs. The followings are the results ; 1) The age of the patients tested ranged from 16 to 75 years old and the mean age of the patients was 41.4 years of age. 2) There were twice as many male patients, with a ratio of 288 : 135 men to women. 3) 101 patients suffered from single herniated discs, while 322 patients suffered from multi-herniated discs. 4) Of single herniated disc injuries, 52 patients had protruded discs (52%), while 25 patients had extruded discs (25%). 21 Patients (21%) had herniated intervertebral discs between $C_4{\sim}C_5$, and 51 patients (50%), and had the same injury between $C_5$ and $C_6$. 5) Of multi-herniated disc injuries, 140 patients had protruded discs(44%). while 45 patients had extruded discs (14%). 54 patients had both protruded and extruded discs(17%). 36 patients(11%), herniated discs $C_3{\sim}C_6$ ; 69 patients (21%), herniated discs $C_3{\sim}C_7$ ; 47 patients(15%) herniated discs $C_4{\sim}C_6$ and 67 patients(20%) herniated discs $C_5{\sim}C_7$.

  • PDF

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV) (자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발)

  • Ilhoon Jang;Muhammad Hafidz Ariffudin;Simon Song
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.14-23
    • /
    • 2023
  • The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.

A STUDY ON MAGNETIC RESONANCE IMAGING OF THE TEMPOROMANDIBULAR JOINT (악관절에 대한 자기 공명 영상의 연구)

  • Kim Hyung Sik;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.2
    • /
    • pp.187-198
    • /
    • 1990
  • Examinations of the temporomandibular joints were performed on a 1.5 Tesla magnetic resonance (MR) system. An MR surface receiver coil 3 inch in diameter was placed on plastic frame, the patient's head being placed in the frame so that the coil was pressed against the temporal region. In taking advantage of the magnetic resonance imaging that has been studied briskly till now, author obtained the images of parasagittal and paracoronal planes about the temporomandibular joint by using MPGR (Multi-Planar Gradient Recalled), GRASS (Gradient Recalled Acquisition in the Steady State), and CSMEMP (Contiguous Slice Multiple Echo, Multi-Planar), that differ from the Spin Echo pulse sequence which the previous authors used. Five subjects with no symptoms of temporomandibular joint pain and dysfunction were studied. The plane images obtained by these methods were compared with those by Spin Echo pulse sequence. The results were as follows: 1. The optimal repetition times (TR) and echo times (TE) for T.M.J. image were; a. 400 msec and 18 msec in PMGR pulse sequence. b. 40 msec and 12 msec in GRASS pulse sequence. c. 700 msec and 30 msec in CSMEMP pulse sequence. d. 500 msec and 20 msec in Spin Echo pulse sequence. 2. When the MPGR pulse sequence was using, T2-weighted image was obtained in very short time. On the image of the paracoronal plane by GRASS pulse sequence, meniscus showed the moderate signal intensity, and the meniscus and its anteromedial, posterolateral attachments were observed definitely with gray color. 4. The signal intensity of Spin Echo pulse sequence was equal to that of CSMEMP pulse sequence, but the image by CSMEMP pulse sequence showed relatively lower level in its resolution.

  • PDF

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP)

  • Martin, Thomas;Wang, Yi;Rashid, Shams;Shao, Xingfeng;Moeller, Steen;Hu, Peng;Sung, Kyunghyun;Wang, Danny JJ
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.210-222
    • /
    • 2017
  • Purpose: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T. Materials and Methods: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in $2{\pi}$ dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing banding artifact removal in the brain. Results: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP. Conclusion: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.

Comparison of the Diagnostic Accuracies of 1.5T and 3T Stress Myocardial Perfusion Cardiovascular Magnetic Resonance for Detecting Significant Coronary Artery Disease

  • Min, Jee Young;Ko, Sung Min;Song, In Young;Yi, Jung Geun;Hwang, Hweung Kon;Shin, Je Kyoun
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1007-1020
    • /
    • 2018
  • Objective: To compare the diagnostic performance of cardiovascular magnetic resonance (CMR) myocardial perfusion at 1.5- and 3-tesla (T) for detecting significant coronary artery disease (CAD), with invasive coronary angiography (ICA) as the reference method. Materials and Methods: We prospectively enrolled 281 patients (age $62.4{\pm}8.3$ years, 193 men) with suspected or known CAD who had undergone 1.5T or 3T CMR and ICA. Two independent radiologists interpreted perfusion defects. With ICA as the reference standard, the diagnostic performance of 1.5T and 3T CMR for identifying significant CAD (${\geq}50%$ diameter reduction of the left main and ${\geq}70%$ diameter reduction of other epicardial arteries) was determined. Results: No differences were observed in baseline characteristics or prevalence of CAD and old myocardial infarction (MI) using 1.5T (n = 135) or 3T (n = 146) systems. Sensitivity, specificity, positive and negative predictive values, and area under the receiver operating characteristic curve (AUC) for detecting significant CAD were similar between the 1.5T (84%, 64%, 74%, 76%, and 0.75 per patient and 68%, 83%, 66%, 84%, and 0.76 per vessel) and 3T (80%, 71%, 71%, 80%, and 0.76 per patient and 75%, 86%, 64%, 91%, and 0.81 per vessel) systems. In patients with multi-vessel CAD without old MI, the sensitivity, specificity, and AUC with 3T were greater than those with 1.5T on a per-vessel basis (71% vs. 36%, 92% vs. 69%, and 0.82 vs. 0.53, respectively). Conclusion: 3T CMR has similar diagnostic performance to 1.5T CMR in detecting significant CAD, except for higher diagnostic performance in patients with multi-vessel CAD without old MI.