• Title/Summary/Keyword: multi-resistant

Search Result 364, Processing Time 0.029 seconds

A Study of Authentication Scheme and Operating Method of Multi Master Keys for Cryptosystem using Tamper Resistant Module (Tamper Resistant Module을 이용한 암호시스템에서의 인증방식과 다중마스터 키의 운용에 관한 연구)

  • 조주연;이필중
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1992.11a
    • /
    • pp.81-98
    • /
    • 1992
  • 본 논문에서는 TRM을 이용한 사용자의 ID를 기초로 하는 암호시스템을 구현하고 안전성 유지를 위해 반드시 필요한 TRM과 사용자사이의 쌍방인증방식을 설명하였다. 그리고 이의 개선된 방식으로서 키 생성키인 마스터키를 다중화 하여 TRM내에 국소 분배함으로써 TRM내의마스터 키를 시스템 상에서 보호하는 방안과 TRM Identity(TID)를 이용한 디지탈 서명방식을 제안하였다. 제안된 방식은 암/복호화의 속도가 빠른 관용 암호알고리듬을 사용하면서도 디지탈 서명을 비롯한 공개키 암호알고리듬이 가지고 있는 장점들을 모두 구현하고 있다.

  • PDF

The Diversity of Multi-drug Resistance Profiles in Tetracycline-Resistant Vibrio Species Isolated from Coastal Sediments and Seawater

  • Neela Farzana Ashrafi;Nonaka Lisa;Suzuki Satoru
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.64-68
    • /
    • 2007
  • In this study we examined the multi-drug resistance profiles of the tetracycline (TC) resistant genus Vibrio to determine its susceptibility to two ${\beta}-lactams$, ampicillin (ABPC), and mecillinam (MPC), as well as to macrolide, erythromycin (EM). The results showed various patterns of resistance among strains that were isolated from very close geographical areas during the same year, suggesting diverse patterns of drug resistance in environmental bacteria from this area. In addition, the cross-resistance patterns suggested that the resistance determinants among Vibrio spp. are acquired differently within the sediment and seawater environments.

Susceptibilities of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Milk of Bovine Mastitis to Antibiotics Combined with Sulbactam (젖소 유방염에서 분리된 메티실린 내성 황색포도상구균에 대한 항생제와 Sulbactam 병합의 항균효과)

  • Yoo, Jong-Hyun;Han, Hong-Ryul;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.25 no.4
    • /
    • pp.231-235
    • /
    • 2008
  • Various kinds of antibiotic intramammary infusions are used for treatment of bovine mastitis. As antibiotic-resistant bacteria are increased, the therapeutic rate for bovine mastitis is decreased. The goal of this research is to detect significant synergic effects of combination of antibiotics with sulbactam, $\beta$-lactamase inhibitor, on methicilin-resistant Staphylococcus aureus (MRSA). We used 5 strains of MRSA isolated from bovine mastitis with clinical and subclinical signs. All of the bacteria isolated had resistance to oxacillin and showed multi-resistant patterns in the antimicrobial susceptibility tests. Minimal bactericidal concentrations of ampicillin, amoxicillin, cephalexin, ampicillin/sulbactam(2:1), amoxicillin/sulbactam (2:1), and cephalexin/sulbactam (1:1) were measured according to broth microdilution method suggested by National Committee for Clinical Laboratory Standards (NCCLS, M31-A2) to compare the synergic effects of sulbactam combination with each antibiotic alone. Ampicillin and amoxicillin showed synergic antibacterial activity to 4 and 3 respectively in 5 strains of MRSA in combination with sulbactam. This study demonstrates that ampicillin/sulbactam and amoxicillin/sulbactam can be therapeutic choices for mastitis associated with MRSA.

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates

  • Jeong, Eun-Tak;Park, Seul-Ki;Jo, Du-Min;Khan, Fazlurrahman;Choi, Tae Ho;Yoon, Tae-Mi;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1288-1294
    • /
    • 2021
  • There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Antibacterial Activity of Salvia Miltiorrhiza against Methicillin-resistant Staphylococcus aureus (丹參의 methicillin 내성 황색포도구균에 대한 효과)

  • Seo, Myung-won;Jeong, Seung-il;Shin, Chol-gyun;Ju, Young-sung;Kim, Hong-jun;Ko, Byoung-seob
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.1
    • /
    • pp.94-99
    • /
    • 2003
  • Objectives : Gram-positive bacteria have became increasing resistant to antibacterial agents, and hence multi-drug-resistant bacterial pathogens are now a major problem in clinical medicine. There is, therefore, a need for new antibacterial agents. In the course of our screening program for potent antibacterial agent from medicinal plants, the extract of Salvia miltiorrhiza (S. miltiorrhiza) showed antibacterial activity against methcillin resistant Staphylococcus aureus (MRSA) and antibiotic-resistant S. aureus. Methods : S. miltiorrhiza was extracted with 80$\%$ EtOH. The extract was suspended in H2O and fractionated successively with hexane chloroform, ethyl acetate, and n-buthanol. The chloroform fraction, which showed the highest antibacterial activity(MICs, 78㎍/ml) against MRSA, was chromatographed on a silica gel column and recycling prep-LC to give the pure antibacterial component. Results and Conclusions : The second fraction among the chloroform soluble portion of an aqueous EtOH extract of S. miltiorrhiza root showed outstanding antibacterial activity against MRSA and antibiotic-resistant S. aureus compared to the other fraction. An active compound was isolated from the second fraction using silica gel column chromatoraphy and recycling prep-LC. Based on these data together with the IH-, 13C-NMR, mass and mp, the active compounds were identified tanshinone Ⅰ, dehydrotanshinone Ⅰ and cryptotanshinone. Among tanshinones, cryptotanshinone and dihydrotanshinone Ⅰ MICs against MRSA and antibiotics-resistant S. aureus were 12.5, 12.5 and 6.3㎍/ml, respectively.

  • PDF

Comparison of Oral Care and Ventilator Circuit on the Reduction of Multi-drug Resistant Infections among Intensive Care Unit Patients (구강간호방법과 인공호흡기회로 종류에 따른 다제내성균 발생률 비교)

  • Shin, Eun Suk;Lee, Gyung Jin;Choi, Eun Jung;Lim, Sung Chul;Lee, Eun Sook
    • Journal of Korean Clinical Nursing Research
    • /
    • v.17 no.2
    • /
    • pp.150-162
    • /
    • 2011
  • Purpose: Multi-drug resistant (MR) infections among intensive care unit (ICU) patients with oral intubation and a ventilator are serious nosocomial infections. This study was done to compare the effects of oral care and ventilator circuit on reduction of MR infections. Methods: A total of 92 participants were recruited from an ICU at C University Hospital in G-city, Korea, assigned to one of 4 groups and evaluated: group I received oral care with sponge and reusable circuit; group II received oral care with tooth brush and reusable circuit; group III received oral care with sponge and disposable circuit; group IV received oral care with tooth brush and disposable circuit. Results: Prevalence rate of MR infections was highest in group I (47.8%), followed by group II (30.4%), group IV (19.0%), and group III (13.6%). Of the four groups, group III showed a significantly decreased MR infections (p=.035) and higher possibility of survival rate as time passes according to survival analysis (p=.019). Conclusion: Results of this study indicate that using disposable ventilator circuit significantly decreases MR infections and raises the possibility of a higher survival rate as time passes. According to this study, the use of disposable ventilator circuit is useful in prevention of MR infections.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Surgical Treatment of Multidrug-resistant Pulmonary Tuberculosis (다제내성 폐결핵의 수술적 치료)

  • Kim, Jin Hee;Min, Jin Hong;Park, Jun Ho;Park, Seung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.613-618
    • /
    • 2005
  • Background : Recently, medical treatment of multi-drug resistant pulmonary tuberculosis has been unsuccessful. Through analyzing the cases with surgical treatment, we hope to provide some help in treating multi-drug resistant pulmonary tuberculosis in the future. Material and Method : A retrospective review was performed with 138cases of surgical treatment of multi-drug resistant tuberculosis during 10years from January 1994 to December 2003 at National Masan Hospital. Results : The ratio of men to women, 5.1:1 indicates that there were more incidences in men. The number of the resistant drugs was 5.3 with a mean age of 42.6 years. Cavitary lesions on the plain chest X-rays were seen in 94cases (68.1%). 128cases had positive sputum culture preoperatively. Types of operations were 24 pnemonectomies, 83 lobectomies, 10 bilobectomies, 19 lobectomies with segmentectomies or wedge resections, 1 wedge resection, and 1 carvenoplasty. There was no death after operation. There were 6cases of air leakage over a week, 6cases of postoperative bleeding, 8cases of bronchopleural fistula and empyema, 16cases of dead space, 1case of atelectasis, 1case of wound infection, 1case of cyst as postoperative complication. Postoperative complication showed higher long-term negative conversion rate of 92.8%. Conclusion : There has been many discussions about operative indications, postoperative drug regimens, length of postoperative chemotherapy. In our study, we showed higher long-term success rate of postoperative chemotherapy with pulmonary resection on multi-drug resistant pulmonary tuberculosis.

Bactericidal Effect of Cecropin A Fused Endolysin on Drug-Resistant Gram-Negative Pathogens

  • Lim, Jeonghyun;Hong, Juyeon;Jung, Yongwon;Ha, Jaewon;Kim, Hwan;Myung, Heejoon;Song, Miryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.816-823
    • /
    • 2022
  • The rapid spread of superbugs leads to the escalation of infectious diseases, which threatens public health. Endolysins derived from bacteriophages are spotlighted as promising alternative antibiotics against multi-drug resistant bacteria. In this study, we isolated and characterized the novel Salmonella typhimurium phage PBST08. Bioinformatics analysis of the PBST08 genome revealed putative endolysin ST01 with a lysozyme-like domain. Since the lytic activity of the purified ST01 was minor, probably owing to the outer membrane, which blocks accessibility to peptidoglycan, antimicrobial peptide cecropin A (CecA) was fused to the N-terminus of ST01 to disrupt the outer membrane. The resulting CecA::ST01 has been shown to have increased bactericidal activity against gram-negative pathogens including Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Enterobacter cloacae and the most affected target was A. baumannii. In the presence of 0.25 µM CecA::ST01, A. baumannii ATCC 17978 strain was completely killed and CCARM 12026 strain was wiped out by 0.5 µM CecA::ST01, which is a clinical isolate of A. baumannii and resistant to multiple drugs including carbapenem. Moreover, the larvae of Galleria mellonella could be rescued up to 58% or 49% by the administration of CecA::ST01 upon infection by A. baumannii 17978 or CCARM 12026 strain. Finally, the antibacterial activity of CecA::ST01 was verified using 31 strains of five gram-negative pathogens by evaluation of minimal inhibitory concentration. Thus, the results indicate that a fusion of antimicrobial peptide to endolysin can enhance antibacterial activity and the spectrum of endolysin where multi-drug resistant gram-negative pathogens can be efficiently controlled.