• Title/Summary/Keyword: multi-resistant

Search Result 364, Processing Time 0.025 seconds

Characteristics of Yersinia enterocolitica isolates from beef and pork carcass (소와 돼지도체에서 Yersinia enterocolitica의 분리 및 특성)

  • Chae, Hee-Sun;Kim, Joo-Young;Kim, Jee-Eun;Yang, Yun-Mo;Jin, Kyung-Sun;Shin, Bang-Woo;Kim, Sun-Heung;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.2
    • /
    • pp.195-205
    • /
    • 2008
  • Yersinia enterocolitica is a zoonotic agent, and to cause food poisoning. This study was carried out to get some basic information for the control of Yersinia infection. A total of 1,680 samples were collected from beef and pork carcasses from January 2006 to December 2007 in Seoul. The isolation rate was higher in pork carcass than in beef carcass. Five (0.59%) Yersinia enterocolitica were isolated from the 840 of beef carcasses, and eighteen(2.14%) were isolated from the 840 of pork carcasses. Among 23 strains, 22 were classified into biotype 1A, and one was biotype 6. In serotyping of Y enterocolitica isolates, 21 strains were untypable (UT), and 2 were O5 and O8 respectively. In PCR, Ail gene was not detected in all of 23 strains that determined non-pathogenic. In antimicrobial susceptibility test, twelve strains (52.2%) of 23 isolates showed the multi -resistant patterns with over 3 drugs. PFGE was performed after the genomic DNA of twenty three isolates, which was digested with Xba I. the 23 isolates showed 12 ($A{\sim}L$) PFGE type.

Isolation frequency and antimicrobial resistance of Escherichia coli & Enterococcus spp. isolated from beef & pork on sale in Seoul, Korea (서울지역에서 유통 중인 쇠고기와 돼지고기로부터 분리된 대장균과 장구균의 분리율 및 항생제 내성)

  • Kim, Ju-Young;Park, Mi-Ae;Kim, Jee-Eun;Chae, Hee-Sun;Park, Yeon-Jae;Son, Jang-Won;Yang, Yun-Mo;Choi, Tae-Seok;Lee, Ju-Hyung
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • The aim of this study was to investigate the isolation frequency and antimicrobial resistance of Escherichia coli (E. coli) and Enterococcus spp. from domestic beef and pork on sale in Seoul, Korea. A total of 106 (10.4%) E. coli and 114 (11.2%) Enterococcus spp. from 635 domestic beef and 381 pork samples were isolated and examined for susceptibility to 15 and 11 antimicrobial agents, respectively. The most frequent antimicrobial resistance observed in E. coli isolates was to ampicillin (38.6%), followed by streptocmycin (34.9%) and tetracycline (32.0%). The most frequent antimicrobial resistance in E. faecium isolates was to erythromycin (53.8%) and rifampin (46.1%), and in E. faecalis isolates was to tetracycline (55.7%) and rifampin (55.0%). Among the isolates, multi-drug resistant (MDR) E. coli and Enterococcus spp. strains showing resistances to more than two antimicrobial agents tested were 10.4% and 11.2%, respectively. As a result, appropriate protocols for antimicrobial agents and strategies to reduce antimicrobial resistance will be needed in future.

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

Performance analysis of multistage interference cancellation schemes for a DS/CDMA system subject to delay constraint (CD/CDMA 시스템에서의 제한된 처리 지연 시간을 고려한 단단계 간섭 제거 방식에 대한 성능 분석)

  • 황선한;강충구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2653-2663
    • /
    • 1997
  • The successive and parallel interference cancellation schemes are two well-known types of multi-stage interference cancellation schemes using the conventional correlator receivers as a basic building block, which has been known to significantly improve the performance of DS/CDMA system in the multiple access communication. Performance comparison between these two schemes is made strictly based on the analytical and it has been shown that the successive interference cancellation (SIC) scheme is more resistant to fading than the parallel interference cancellation (PIC) scheme. We further investigate the performance of the successive IC scheme subject to the delay constraint, which may be imposed typically on most of service applications with a real-time transmission requirement, including speech and video applications. Our analysis demonstrates that the performance may be significantly improved by the groupwise successive interference cancellation (GSIC) scheme, which can be properly optimized to meet the given delay constraint.

  • PDF

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Virulence Differentiation of Eight Turnip mosaic virus Isolates Infecting Cruciferous Crops

  • Choi, Hong-Soo;Sohn, Seong-Han;Yoon, Moo-Kyoung;Cheon, Jeong-Uk;Kim, Jeong-Soo;Were, Hassan Karakacha;Cho, Jang-Kyung;Kim, Kook-Hyung;Takanami, Yoichi
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.369-376
    • /
    • 2005
  • Turnip mosaic virus (TuMV) is an infectious viral pathogen on the cruciferous crops, predominantly Chinese cabbage (Brassica campestris subsp. pekinensis) and radish (Raphanus sativus). On the basis of the symptom development in selective differential hosts from indicator host species, Chinese cabbage and Korean radish inbred lines, the representative eight isolates of TuMV were divided into two major groups/or six types. Group I includes Th 1, Ca-ad7, and Cj-ca2-1 isolates, while group II includes the other isolates (rg-pfl, r 9-10, Rhcql-2, Stock and Mustard). According to the molecular phylogenetic analysis, these isolates, however, divided into two groups and two independent isolates. Phylogenetic analysis indicated that four isolates (Tu 1, r9-10, Stock and Rh-cql-2) formed a distinct phylogenetic group, and the other two isolates (Ca-ad7 and Cj-ca2-1) also formed another group. Mustard and rg-pfl isolates did not seem to have any relationship with these two groups. Taken together, these results indicated that virulence differentiation on host plants, molecular phylogenetic analysis of the nucleotide and the deduced amino acid of TuMV coat proteins did not show any relationship. The multi-resistant lines, Wonyae 20026 and BP058 in Chinese cabbage represent valuable genetic materials that can be used for crucifer breeding programs on TuMV resistance, but not in Korean radish.

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

A successful management after preterm delivery in a patient with severe sepsis during third-trimester pregnancy

  • Ra, Moni;Kim, Myungkyu;Kim, Mincheol;Shim, Sangwoo;Hong, Seong Yeon
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.1
    • /
    • pp.84-88
    • /
    • 2018
  • A 33-year-old woman visited the emergency department presenting with fever and dyspnea. She was pregnant with gestational age of 31 weeks and 6 days. She had dysuria for 7 days, and fever and dyspnea for 1 day. The vital signs were as follows: blood pressure 110/70 mmHg, heart rate 118 beats/minute, respiratory rate 28/minute, body temperature $38.7^{\circ}C$, and oxygen saturation by pulse oximetry 84% during inhalation of 5 liters of oxygen by nasal prongs. Crackles were heard over both lung fields. There were no signs of uterine contractions. Chest X-ray and chest computed tomography scan showed multiple consolidations and air bronchograms in both lungs. According to urinalysis, there was pyuria and microscopic hematuria. She was diagnosed with community-acquired pneumonia and urinary tract infection (UTI) that progressed to severe sepsis and acute respiratory failure. We found extended-spectrum beta-lactamase producing Escherichia coli in the blood culture and methicillin-resistant Staphylococcus aureus in the sputum culture. The patient was transferred to the intensive care unit with administration of antibiotics and supplementation of high-flow oxygen. On hospital day 2, hypoxemia was aggravated. She underwent endotracheal intubation and mechanical ventilation. After 3 hours, fetal distress was suspected. Under 100% fraction of inspired oxygen, her oxygen partial pressure was 87 mmHg in the arterial blood. She developed acute kidney injury and thrombocytopenia. We diagnosed her with multi-organ failure due to severe sepsis. After an emergent cesarean section, pneumonia, UTI, and other organ failures gradually recovered. The patient and baby were discharged soon thereafter.

Treatment results of the second-line chemotherapy regimen for patients with low-risk gestational trophoblastic neoplasia treated with 5-day methotrexate and 5-day etoposide

  • Kanno, Toshiyuki;Matsui, Hideo;Akizawa, Yoshika;Usui, Hirokazu;Shozu, Makio
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.89.1-89.8
    • /
    • 2018
  • Objective: Highly effective chemotherapy for patients with low-risk gestational trophoblastic neoplasia (GTN) is associated with almost a 100% cure rate. However, 20%-30% of patients treated with chemotherapy need to change their regimens due to severe adverse events (SAEs) or drug resistance. We examined the treatment outcomes of second-line chemotherapy for patients with low-risk GTN. Methods: Between 1980 and 2015, 281 patients with low-risk GTN were treated. Of these 281 patients, 178 patients were primarily treated with 5-day intramuscular methotrexate (MTX; n=114) or 5-day drip infusion etoposide (ETP; n=64). We examined the remission rates, the drug change rates, and the outcomes of second-line chemotherapy. Results: The primary remission rates and drug resistant rates of 5-day ETP were significantly higher (p<0.001) and significantly lower (p=0.002) than those of 5-day MTX, respectively. Forty-seven patients (26.4%) required a change in their chemotherapy regimen due to the SAEs (n=16) and drug resistance (n=31), respectively. Of these 47 patients failed the first-line regimen, 39 patients (39/47, 82.9%) were re-treated with single-agent chemotherapy, and 35 patients (35/39, 89.7%) achieved remission. Four patients failed second-line, single-agent chemotherapy and eight patients (17.0%) who failed first-line regimens were treated with combined or multi-agent chemotherapy and achieved remission. Conclusions: Patients with low-risk GTN were usually treated with single-agent chemotherapy, while 20%-30% patients had to change their chemotherapy regimen due to SAEs or drug resistance. The second-line regimens of single-agent chemotherapy were effective; however, there were several patients who needed multiple agents and combined chemotherapy to achieve remission.